K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 4 2019

Câu 1:

Giải trâu bò: \(m=\frac{x+1}{\sqrt{2x^2+1}}\)

Đặt \(f\left(x\right)=\frac{x+1}{\sqrt{2x^2+1}}\Rightarrow f'\left(x\right)=\frac{\sqrt{2x^2+1}-\frac{\left(x+1\right).2x}{\sqrt{2x^2+1}}}{2x^2+1}=\frac{2x^2+1-2x^2-2x}{\left(2x^2+1\right)\sqrt{2x^2+1}}=\frac{1-2x}{\left(2x^2+1\right)\sqrt{2x^2+1}}\)

\(f'\left(x\right)=0\Rightarrow x=\frac{1}{2}\Rightarrow\) từ BBT ta thấy hàm số đạt cực đại tại \(x=\frac{1}{2}\)

\(\Rightarrow m< f\left(\frac{1}{2}\right)=\frac{\sqrt{6}}{2}\)

Mặt khác ta có:

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\frac{x+1}{\sqrt{2x^2+1}}=lim\frac{1+\frac{1}{x}}{\sqrt{2+\frac{1}{x^2}}}=\frac{\sqrt{2}}{2}\)

\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\frac{x+1}{\sqrt{2x^2+1}}=\lim\limits_{x\rightarrow-\infty}\frac{1+\frac{1}{x}}{-\sqrt{2+\frac{1}{x^2}}}=-\frac{\sqrt{2}}{2}\)

\(\Rightarrow-\frac{\sqrt{2}}{2}< m< \frac{\sqrt{6}}{2}\)

NV
15 tháng 4 2019

Câu 2:

S A B C G M N P

\(V_{S.ABC}=\frac{1}{6}SA.AB.BC=\frac{1}{6}a^3\)

Qua G kẻ đường thẳng song song BC lần lượt cắt SB, SC tại M và N

Gọi P là trung điểm SC, áp dụng định lý Talet:

\(\frac{PN}{PC}=\frac{PG}{BP}=\frac{1}{3}\Rightarrow\frac{SN}{SC}=\frac{SM}{SB}=\frac{PN+SP}{2SP}=\frac{PN+PC}{2PC}=\frac{2}{3}\)

Áp dụng công thức Simsons:

\(\frac{V_{S.ANM}}{V_{S.ABC}}=\frac{SA}{SA}.\frac{SN}{SC}.\frac{SM}{SB}=1.\frac{2}{3}.\frac{2}{3}=\frac{4}{9}\Rightarrow V_{S.ANM}=\frac{4}{9}V_{SABC}=\frac{2}{27}a^3\)

\(\Rightarrow V_{ABCNM}=V_{SABC}-V_{SANM}=\frac{1}{6}a^3-\frac{2}{27}a^3=\frac{5}{54}a^3\)

bài 3:a)O=AC x BD (x là giao nhá)=> SO \(\perp\) (ABCD)=> OC=\(a\sqrt{2}\)\(\Rightarrow\widehat{SCO}=60^o\Rightarrow SO=OC.tan60^o=\frac{a\sqrt{6}}{2}\Rightarrow V_{k.chóp}=\frac{1}{3}SO.S_{ABCD}=\frac{1}{3}.a\frac{\sqrt{6}}{2}.a^2=\frac{a^3\sqrt{6}}{6}\)b) \(\Delta SAC\)có \(\widehat{SCA=60^o}\)=> \(\Delta SAC\)đềuAE\(\perp\)SC=> AE=\(\frac{a\sqrt{6}}{2}\)AExSO=G => G là trọng tâm \(\Delta SAC\)=> \(\frac{SG}{SO}\)=\(\frac{2}{3}\)\(\hept{\begin{cases}BD\perp SO\\BD\perp...
Đọc tiếp

bài 3:a)O=AC x BD (x là giao nhá)=> SO \(\perp\) (ABCD)
=> OC=\(a\sqrt{2}\)\(\Rightarrow\widehat{SCO}=60^o\Rightarrow SO=OC.tan60^o=\frac{a\sqrt{6}}{2}\Rightarrow V_{k.chóp}=\frac{1}{3}SO.S_{ABCD}=\frac{1}{3}.a\frac{\sqrt{6}}{2}.a^2=\frac{a^3\sqrt{6}}{6}\)

b) \(\Delta SAC\)có \(\widehat{SCA=60^o}\)=> \(\Delta SAC\)đều

AE\(\perp\)SC=> AE=\(\frac{a\sqrt{6}}{2}\)

AExSO=G => G là trọng tâm \(\Delta SAC\)=> \(\frac{SG}{SO}\)=\(\frac{2}{3}\)

\(\hept{\begin{cases}BD\perp SO\\BD\perp AC\end{cases}\Rightarrow BD\perp\left(SAC\right)\Rightarrow BD\perp SC}\)

(AMEN)\(\perp\)SC => MN \(\perp\)SC => MN //BD => \(\frac{MN}{BD}=\frac{SG}{SO}=\frac{2}{3}\Rightarrow MN=\frac{2}{3}BD=\frac{2a\sqrt{2}}{3}\)

\(S_{AMEN}=\frac{1}{2}MN.AE=\frac{1}{2}.\frac{2a\sqrt{2}}{3}.\frac{a\sqrt{6}}{2}=\frac{a^2\sqrt{3}}{3}\)

\(\frac{V_{SAMEN}}{V_{SABCD}}=\frac{SM}{SB}.\frac{SE}{SC}.\frac{SN}{SD}=\frac{2}{3}.\frac{1}{2}.\frac{2}{3}=\frac{2}{9}\)

\(\Rightarrow V_{SAMEN}=\frac{2}{9}.\frac{a^3\sqrt{6}}{6}=\frac{a^3\sqrt{6}}{27}\)

phần trả lời bên dưới là câu 4

1
5 tháng 8 2019

I*AB=> SI\(\perp\)AB

SI=\(SI=\frac{AB\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\)

\(V_{k.chop}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.a^2=\frac{a^3\sqrt{3}}{4}\)

b) Kẻ IK//DM(K\(\in\)AD)

Kẻ KH\(\perp\)DM(H\(\in\)DM)

=> d(I,DM)=d(K,DM0=KH

\(\Delta IAK~\Delta DCM\Rightarrow AK=\frac{1}{2}CM=\frac{a}{6}\)=> KD=5a/6

\(cos\widehat{ADM}=cos\widehat{DMC}=\frac{CM}{DM}=\frac{\frac{a}{3}}{\frac{a\sqrt{10}}{3}}=\frac{1}{\sqrt{10}}\)

=> KH=KDsin\(\widehat{ADM}\)=\(\sqrt{1-\cos\widehat{ADM}^2}=\frac{5a}{6}.\frac{3}{\sqrt{10}}=\frac{a\sqrt{10}}{4}\)

d(S,DM)=\(\sqrt{SI^2+d\left(I,DM\right)^2}=\frac{a\sqrt{22}}{4}\)

Câu 1 : Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{3sinx+2}{sinx+1}\) trên đoạn \(\left[0;\frac{\Pi}{2}\right]\) . Khi đó giá trị của \(M^2+m^2\) là A. \(\frac{31}{2}\) B. \(\frac{11}{2}\) C. \(\frac{41}{4}\) D. \(\frac{61}{4}\) Câu 2 : Gọi M , N lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y = \(x+\sqrt{4-x^2}\) . giá trị...
Đọc tiếp

Câu 1 : Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{3sinx+2}{sinx+1}\) trên đoạn \(\left[0;\frac{\Pi}{2}\right]\) . Khi đó giá trị của \(M^2+m^2\)

A. \(\frac{31}{2}\) B. \(\frac{11}{2}\) C. \(\frac{41}{4}\) D. \(\frac{61}{4}\)

Câu 2 : Gọi M , N lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y = \(x+\sqrt{4-x^2}\) . giá trị của biểu thức ( M + 2N ) là

A. \(2\sqrt{2}+2\) B. \(4-2\sqrt{2}\) C. \(2\sqrt{2}-4\) D. \(2\sqrt{2}-2\)

Câu 3 : Tìm tất cả các giá trị của tham số m để giá trị nhỏ nhất của hàm số y = \(-x^3-3x^2+m\) trên đoạn \(\left[-1;1\right]\) bằng 0

A. m = 0 B. m = 6 C. m = 2 D. m = 4

Câu 4 : Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{x+m}{x+1}\) trên \(\left[1;2\right]\) bằng 8 ( m là tham số thực ) . Khẳng định nào sau đây đúng ?

A. m > 10 B. 8 < m < 10 C. 0 < m < 4 D. 4 < m < 8

2
NV
16 tháng 10 2020

3.

\(y'=-3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)

\(y\left(-1\right)=m-2\) ; \(y\left(1\right)=m-4\)

\(\Rightarrow y_{min}=y\left(1\right)=m-4\)

\(\Rightarrow m-4=0\Rightarrow m=4\)

4.

Hàm đã cho bậc nhất trên bậc nhất nên đơn điệu trên mọi khoảng xác định

\(\Rightarrow y_{min}+y_{max}=y\left(1\right)+y\left(2\right)=\frac{m+1}{2}+\frac{m+2}{3}=8\)

\(\Rightarrow m=\frac{41}{5}\)

Đáp án B

NV
16 tháng 10 2020

1.

\(y'=\frac{1}{\left(sinx+1\right)^2}.cosx>0\Rightarrow y\) đồng biến

\(m=y_{min}=y\left(0\right)=2\)

\(M=y_{max}=y\left(1\right)=\frac{5}{2}\)

\(\Rightarrow M^2+m^2=\frac{41}{4}\)

2.

Hàm xác định trên \(\left[-2;2\right]\)

\(y'=1-\frac{x}{\sqrt{4-x^2}}=0\Leftrightarrow x=\sqrt{2}\)

\(y\left(-2\right)=-2\) ; \(y\left(\sqrt{2}\right)=2\sqrt{2}\) ; \(y\left(2\right)=2\)

\(\Rightarrow N=-2;M=2\sqrt{2}\)

\(\Rightarrow M+2N=2\sqrt{2}-4\)

Câu 1 : Cho lăng trụ đứng ABC.A'B'C' có AB = AC = 2a , \(\widehat{BAC}=120^0\) . Biết thể tích lăng trụ đã cho bằng \(a^3\sqrt{3}\) . Tính góc giữa hai mặt phẳng (A'BC) và (ABC) A. 150 B. 300 C. 450 D. 600 Câu 2 : Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông tại A . Mặt phẳng (A'BC) chia lăng trụ thành hai phần . Tính thể tích V của khối đa diện có chưa đỉnh B' ; biết BC = A'A =...
Đọc tiếp

Câu 1 : Cho lăng trụ đứng ABC.A'B'C' có AB = AC = 2a , \(\widehat{BAC}=120^0\) . Biết thể tích lăng trụ đã cho bằng \(a^3\sqrt{3}\) . Tính góc giữa hai mặt phẳng (A'BC) và (ABC)

A. 150 B. 300 C. 450 D. 600

Câu 2 : Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông tại A . Mặt phẳng (A'BC) chia lăng trụ thành hai phần . Tính thể tích V của khối đa diện có chưa đỉnh B' ; biết BC = A'A = a

A. V = \(\frac{\sqrt{3}}{2}a^3\) B. V = \(\frac{1}{4}a^3\) C. V = \(\frac{\sqrt{3}}{2}a^3\) D. V = \(\frac{1}{6}a^3\)

Câu 3 : Cho lăng trụ đứng ABC.A'B'C' có đáy ABC vuông cân tại B , AB = \(a\sqrt{2}\) . Góc giữa A'B và mặt phẳng (ACC'A' ) bằng 300 . Tính thể tích khối lăng trụ ABC.A'B'C'

A. 2a3 B. \(2\sqrt{6}a^3\) C. \(\frac{2\sqrt{6}}{3}a^3\) D. \(\frac{2}{3}a^3\)

Câu 4 : Cho lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng a . Gọi G là trọng tâm tam giác ABC . Mặt phẳng (A'B'G) chia lăng trụ thành 2 phần , tính thể tích phần chứa cạnh AB

A. \(\frac{5a^3\sqrt{3}}{108}\) B. \(\frac{a^3\sqrt{3}}{36}\) C. \(\frac{2a^3\sqrt{3}}{27}\) D. \(\frac{a^3\sqrt{3}}{4}\)

Câu 5 : Tính thể tích V của khối lăng trụ ABC.A'B'C' , tam giác ABC vuông tại B , hình chiếu vuông góc của A lên (ABC) là trung điểm AC . Biết AB = a , BC = \(a\sqrt{3}\) , \(\widehat{\left(A^'B,\left(ABC\right)\right)=45^0}\)

A. V = \(\frac{\sqrt{3}}{8}a^3\) B. V = \(\frac{\sqrt{3}}{4}a^3\) C. V = \(\frac{\sqrt{3}}{2}a^3\) D. V = \(\sqrt{3}a^3\)

4
NV
22 tháng 8 2020

4.

Qua G kẻ đường thẳng song song AB lần lượt cắt AC và BC tại M và N

\(\Rightarrow A'B'NM\) là thiết diện của (A'B'G) và lăng trụ

Theo Talet ta có \(\frac{CM}{AC}=\frac{CN}{BC}=\frac{2}{3}\Rightarrow CM=CN=\frac{2a}{3}\)

Kéo dài A'M, B'N, C'C đồng quy tại P (theo tính chất giao tuyến 3 mặt phẳng)

Do \(CN//B'C'\Rightarrow\frac{PC}{PC'}=\frac{CN}{B'C'}=\frac{2}{3}\Rightarrow\frac{PC}{PC+CC'}=\frac{2}{3}\)

\(\Rightarrow3PC=2\left(PC+a\right)\Rightarrow PC=2a\)

\(\Rightarrow PC'=3a\)

\(MN=\frac{2}{3}BC\Rightarrow S_{CMN}=\frac{4}{9}S_{ABC}=\frac{4}{9}.\frac{a^2\sqrt{3}}{4}=\frac{a^2\sqrt{3}}{9}\)

\(V_{P.A'B'C'}=\frac{1}{3}PC'.S_{A'B'C'}=\frac{1}{3}.3a.\frac{a^2\sqrt{3}}{4}=\frac{a^3\sqrt{3}}{4}\)

\(V_{P.CMN}=\frac{1}{3}PC.S_{CMN}=\frac{1}{3}.2a.\frac{a^2\sqrt{3}}{9}=\frac{2a^3\sqrt{3}}{27}\)

\(\Rightarrow V_{CMN.A'B'C'}=\frac{a^3\sqrt{3}}{4}-\frac{2a^3\sqrt{3}}{27}=\frac{19a^3\sqrt{3}}{108}\)

\(\Rightarrow V_{MNABA'B'}=\frac{a^3\sqrt{3}}{4}-\frac{19a^3\sqrt{3}}{108}=\frac{2a^3\sqrt{3}}{27}\)

NV
22 tháng 8 2020

2.

Đề thiếu dữ kiện ko tính được, chỉ tính được trong trường hợp tam giác ABC là vuông cân.

3.

\(AC=BC=a\sqrt{2}\) ; \(AC=AB\sqrt{2}=2a\)

Gọi M là trung điểm AC \(\Rightarrow BM\perp AC\Rightarrow BM\perp\left(ACC'A'\right)\)

\(\Rightarrow\widehat{BA'M}\) là góc giữa A'B và (ACC'A')

\(\Rightarrow\widehat{BA'M}=30^0\)

\(BM=\frac{1}{2}AC=a\)

\(tan\widehat{BA'M}=\frac{BM}{A'M}\Rightarrow A'M=\frac{BM}{tan30^0}=a\sqrt{3}\)

\(A'A=\sqrt{A'M^2-AM^2}=a\sqrt{2}\)

\(V=\frac{1}{2}A'A.AB.BC=a^3\sqrt{2}\)

Ko đáp án nào đúng

NV
20 tháng 4 2019

\(y'=x^2-\left(3m+2\right)x+2m^2+3m+1\)

\(\Delta=\left(3m+2\right)^2-4\left(2m^2+3m+1\right)=m^2\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3m+2+m}{2}=2m+1\\x_2=\frac{3m+2-m}{2}=m+1\end{matrix}\right.\)

Để hàm số có cực đại, cực tiểu \(\Rightarrow x_1\ne x_2\Rightarrow m\ne0\)

- Nếu \(m>0\Rightarrow2m+1>m+1\Rightarrow\left\{{}\begin{matrix}x_{CĐ}=m+1\\x_{CT}=2m+1\end{matrix}\right.\)

\(\Rightarrow3\left(m+1\right)^2=4\left(2m+1\right)\) \(\Rightarrow3m^2-2m-1=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-\frac{1}{3}< 0\left(l\right)\end{matrix}\right.\)

- Nếu \(m< 0\Rightarrow m+1>2m+1\Rightarrow\left\{{}\begin{matrix}x_{CĐ}=2m+1\\x_{CT}=m+1\end{matrix}\right.\)

\(\Rightarrow3\left(2m+1\right)^2=4\left(m+1\right)\Rightarrow12m^2+8m-1=0\)

\(\Rightarrow\left[{}\begin{matrix}m=\frac{-2+\sqrt{7}}{6}>0\left(l\right)\\m=\frac{-2-\sqrt{7}}{6}\end{matrix}\right.\) \(\Rightarrow\sum m=\frac{4-\sqrt{7}}{6}\)

Câu 1 : Tính thể tích V của khối chóp S.ABC biết tam giác ABC vuông tại B , \(SA\perp\left(ABC\right)\) và SA = AB = a , BC = 2a A. V = \(a^3\) B. V = 2a3 C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{2}{3}a^3\) Câu 2 : Tính thể tích V của khối chóp tam giác đều S.ABC biết cạnh đáy bằng a , cạnh bên \(SA\perp\left(ABC\right)\) và SA = \(2a\sqrt{3}\) A. V = \(\frac{1}{2}a^3\) B. V = \(\frac{3}{2}a^3\) ...
Đọc tiếp

Câu 1 : Tính thể tích V của khối chóp S.ABC biết tam giác ABC vuông tại B , \(SA\perp\left(ABC\right)\) và SA = AB = a , BC = 2a

A. V = \(a^3\) B. V = 2a3 C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{2}{3}a^3\)

Câu 2 : Tính thể tích V của khối chóp tam giác đều S.ABC biết cạnh đáy bằng a , cạnh bên \(SA\perp\left(ABC\right)\) và SA = \(2a\sqrt{3}\)

A. V = \(\frac{1}{2}a^3\) B. V = \(\frac{3}{2}a^3\) C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{2}{3}a^3\)

Câu 3 : Tính thể tích V của khối chóp S.ABCD có đáy ABCD là hình vuông , BD = 2a , cạnh bên \(SA\perp\left(ABC\right)\) và SA = SC

A. V = 4a3 B. V = \(\frac{1}{3}a^3\sqrt{2}\) C. V = \(a^3\sqrt{2}\) D. V = \(\frac{4}{3}a^3\)

Câu 4 : Tính thể tích V của khối chóp S.ABCD là hình chữ nhật , AB = a , AD = \(a\sqrt{3}\) , \(SA\perp\left(ABC\right)\) và SC tạo với mặt phẳng đáy một góc 600

A. V = \(\frac{2}{3}a^3\) B. V = \(\frac{1}{3}a^3\sqrt{2}\) C. V = 6a3 D. V = 2a3

1
NV
4 tháng 8 2020

1.

\(V=\frac{1}{3}SA.\frac{1}{2}AB.BC=\frac{1}{6}.a.a.2a=\frac{a^3}{3}\)

2.

\(V=\frac{1}{3}SA.S_{ABC}=\frac{1}{3}.2a\sqrt{3}.\frac{a^2\sqrt{3}}{4}=\frac{a^3}{2}\)

P/s: chóp này là chóp "có đáy là tam giác đều" chứ không phải "chóp tam giác đều"

Hai loại này khác xa nhau đấy, ko lộn xộn nhầm lẫn được đâu

3.

Câu này đề sai

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp AC\Rightarrow\Delta SAC\) vuông tại A

\(\Rightarrow SC>SA\) (cạnh huyền luôn lớn hơn cạnh góc vuông)

Do đó đề cho \(SA=SC\) là vô lý

4.

\(AC=BD=\sqrt{AB^2+AD^2}=2a\)

\(\widehat{SCA}=60^0\Rightarrow SA=SC.tan60^0=2a\sqrt{3}\)

\(V=\frac{1}{3}SA.AB.AD=\frac{1}{3}.2a\sqrt{3}.a.a\sqrt{3}=2a^3\)

NV
4 tháng 8 2020

1.

Gọi chóp S.ABCD với I là tâm đáy

\(V=\frac{1}{3}SI.S_{ABCD}=\frac{1}{3}SI.a^2=\frac{a^3\sqrt{6}}{6}\)

\(\Rightarrow SI=\frac{a\sqrt{6}}{2}\)

\(IA=\frac{1}{2}AC=\frac{a\sqrt{2}}{2}\Rightarrow SA=\sqrt{SI^2+IA^2}=a\sqrt{2}\)

2.

Đặt \(BC=x\)

Gọi H là hình chiếu của S lên đáy \(\Rightarrow\) H là trung điểm BC

\(\Rightarrow SH=\sqrt{SC^2-HC^2}=\sqrt{4a^2-\frac{x^2}{4}}\)

\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}a\sqrt{x^2-a^2}\)

\(\Rightarrow V=\frac{1}{6}a\sqrt{\left(x^2-a^2\right)\left(4a^2-\frac{x^2}{4}\right)}=\frac{1}{3}a\sqrt{\left(\frac{x^2}{4}-\frac{a^2}{4}\right)\left(4a^2-\frac{x^2}{4}\right)}\)

\(V\le\frac{a}{6}\left(\frac{x^2}{4}-\frac{a^2}{4}+4a^2-\frac{x^2}{4}\right)=\frac{5a^3}{8}\)

29 tháng 11 2016

Dễ dàng chứng minh MN // BC

Xét \(\Delta SBC\) có MN // BC và MN đi qua trọng tâm G

\(\Rightarrow\) \(\begin{cases}SM=\frac{2}{3}SB\\SN=\frac{2}{3}SC\end{cases}\)

Sử dụng công thức tỉ lệ thể tích đố với 2 khối tứ diện S.AMN và S.ABC ta có

\(\frac{V_{S.AMN}}{V_{S.ABC}}=\frac{SA}{SA}.\frac{SM}{SB}.\frac{SN}{SC}=1.\frac{2}{3}.\frac{2}{3}=\frac{4}{9}\\ \Rightarrow V_{S.AMN}=\frac{4}{9}.V_{S.ABC}\)

Tính được \(V_{S.ABC}=\frac{1}{6}SA.AB.BC=\frac{a^3}{6}\)

\(\Rightarrow V_{S.AMN}=\frac{2a^3}{27}\)

Câu 1 : Tính thể tích V của khối chóp S.ABCD có đáy ABCD là hình vuông , cạnh a . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy A. V = \(\frac{2}{3}a^3\) B. V = \(\frac{1}{6}a^3\sqrt{3}\) C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{1}{2}a^3\sqrt{3}\) Câu 2 : Tính thể tích V của khối chóp tứ giác đều có cạnh đáy bằng a và chiều cao bằng 3a ? A. V = 3a3 ...
Đọc tiếp

Câu 1 : Tính thể tích V của khối chóp S.ABCD có đáy ABCD là hình vuông , cạnh a . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy

A. V = \(\frac{2}{3}a^3\) B. V = \(\frac{1}{6}a^3\sqrt{3}\) C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{1}{2}a^3\sqrt{3}\)

Câu 2 : Tính thể tích V của khối chóp tứ giác đều có cạnh đáy bằng a và chiều cao bằng 3a ?

A. V = 3a3 B. V = 2a3 C. V = a3 D. V = \(a^3\sqrt{3}\)

Câu 3 : Tính thể tích V của khối chóp tứ giác đều có cạnh đáy bằng 2a và mặt bên tạo với mặt đáy một góc 450

A. V = \(4\sqrt{3}a^3\) B. V = 2a3 C. V = \(\frac{a\sqrt{3}}{3}a^3\) D. V = \(\frac{4}{3}a^3\)

Câu 4 : Cho hình chóp S.ABC , ABC là tam giác vuông tại B , \(SA\perp\left(ABC\right)\) ; H , K tương ứng là hình

chiếu vuông góc của A lên SB , SC . Tính thể tích khối chóp S.AHK biết SA = SB = a và BC = \(a\sqrt{3}\)

A. V = \(\frac{\sqrt{3}}{6}a^3\) B. V = \(\frac{\sqrt{3}}{2}a^3\) C. V = \(\frac{\sqrt{3}}{60}a^3\) D. V = \(\frac{\sqrt{3}}{24}a^3\)

2
4 tháng 8 2020

câu 4 là SA = AB = a

NV
4 tháng 8 2020

4.

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC\perp AH\)

\(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp SC\)

Lại có \(AK\perp SC\)

\(\Rightarrow SC\perp\left(AKH\right)\Rightarrow SK\) là đường cao của chóp S.AHK ứng với đáy là tam giác AHK vuông tại H (do \(AH\perp\left(SBC\right)\Rightarrow AH\perp HK\))

Áp dụng hệ thức lượng:

\(\frac{1}{AH^2}=\frac{1}{SA^2}+\frac{1}{AB^2}=\)

À thôi đến đây phát hiện ra đề bài sai

\(SA\perp\left(ABC\right)\Rightarrow SA\perp AB\Rightarrow\) tam giác SAB vuông tại A với SA là cạnh góc vuông, SB là cạnh huyền

\(\Rightarrow SB>SA\Rightarrow SB=SA=a\) là hoàn toàn vô lý