Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.Nếu\(|x-1|=0\)
thì x = 1.=> lx+2l = 3 và lx+3l = 4.
=>lx-1l+lx+2l+lx+3l=0+3+4=7.
Nếu \(|x+2|=0\)
thì x=-2 =>lx-1l=3 và lx+3l=1.
=>lx-1l+lx+2l+lx+3l=0+3+1=4.
Nếu \(|x+3|=0\)
thì x=-3 =>lx-1l=4 và lx+2l=1.
=>lx-1l+lx+2l+lx+3l=5.
Vậy \(Min_{\text{lx-1l+lx+2l+lx+3l}}=4\).
\(\Leftrightarrow\frac{9}{4a^2+b^2+c^2}+\frac{9}{a^2+4b^2+c^2}+\frac{9}{a^2+b^2+4c^2}\le\frac{9}{2}\)
Thật vậy, ta có:
\(\frac{9}{4a^2+b^2+c^2}=\frac{\left(a+b+c\right)^2}{2a^2+\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{a^2}{2a^2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\)
Tương tự: \(\frac{9}{a^2+4b^2+c^2}\le\frac{a^2}{a^2+b^2}+\frac{b^2}{2b^2}+\frac{c^2}{b^2+c^2}\) ; \(\frac{9}{a^2+b^2+4c^2}\le\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}+\frac{c^2}{2c^2}\)
Cộng vế với vế:
\(VT\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{a^2}{a^2+b^2}+\frac{b^2}{a^2+b^2}+\frac{b^2}{b^2+c^2}+\frac{c^2}{b^2+c^2}+\frac{a^2}{a^2+c^2}+\frac{c^2}{a^2+c^2}=\frac{3}{2}+3=\frac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn
bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x)
VT (ở đề bài) = a+b+c
<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0
từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r
\(\Leftrightarrow\frac{4a}{4a+3bc}+\frac{4b}{4b+3ac}+\frac{4c}{4c+3ab}\le2\)
\(\Leftrightarrow\frac{bc}{4a+3bc}+\frac{ac}{4b+3ac}+\frac{ab}{4c+3ab}\ge\frac{1}{3}\)
Thật vậy, ta có:
\(VT=\frac{b^2c^2}{4abc+3b^2c^2}+\frac{a^2c^2}{4abc+3a^2c^2}+\frac{a^2b^2}{4abc+3a^2b^2}\)
\(VT\ge\frac{\left(ab+bc+ca\right)^2}{3\left(a^2b^2+b^2c^2+c^2a^2\right)+12abc}=\frac{a^2b^2+b^2c^2+c^2a^2+2\left(a+b+c\right)abc}{3\left(a^2b^2+b^2c^2+c^2a^2+4abc\right)}\)
\(VT\ge\frac{a^2b^2+b^2c^2+c^2a^2+4abc}{3\left(a^2b^2+b^2c^2+c^2a^2+4abc\right)}=\frac{1}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\frac{2}{3}\)
\(P=\frac{a^3}{2a+3b}+\frac{b^3}{3a+2b}=\frac{a^4}{2a^2+3ab}+\frac{b^4}{3ab+2b^2}\)
\(P\ge\frac{\left(a^2+b^2\right)^2}{2\left(a^2+b^2\right)+6ab}\ge\frac{\left(a^2+b^2\right)^2}{2\left(a^2+b^2\right)+3\left(a^2+b^2\right)}=\frac{a^2+b^2}{5}=\frac{2}{5}\)
Dấu "=" xảy ra khi \(a=b=1\)
a/ Bạn cứ khai triển biến đổi tương đương thôi (mà làm biếng lắm)
b/ Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)
\(VT=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(VT\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\left(x+y+z\right)\ge\frac{1}{2}.3\sqrt[3]{xyz}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
cảm ơn bạn nhưng nạ có thể giải nốt cậu a hộ mình đc ko
đề triệu sơn
Hiện câu 1 mih chưa giải đc
Đây là đ.a câu 2
\(\frac{4c}{4c+57}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(Cosi) (1)
Từ đề bài \(\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}\le1-\frac{57}{4c+57}\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}+\frac{57}{4c+57}\le1\) (*)
Từ (*) \(\Rightarrow1-\frac{1}{a+1}=\frac{a}{a+1}\ge\frac{35}{35+2b}+\frac{57}{4c+57}\ge2\sqrt{\frac{35.57}{\left(35+2b\right)\left(4c+57\right)}}\)(2)
Từ (*) \(\Rightarrow1-\frac{35}{35+2b}=\frac{2b}{35+2b}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(3)
Nhân vế với vế của (1);(2);(3) lại ta được :
\(\frac{4c.a.2b}{\left(4c+57\right)\left(a+1\right)\left(35+2b\right)}\ge8\sqrt{\frac{57.35.35.57}{\left(4c+57\right)^2\left(a+1\right)^2\left(35+2b\right)^2}}\)
\(\Leftrightarrow abc\ge35.57=1995\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{1}{a+1}=\frac{35}{35+2b}=\frac{57}{4c+57}\\abc=1995\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{2b}{35}=\frac{4c}{57}\\abc=1995\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=35\\c=\frac{57}{2}\end{cases}}\) Vậy \(MinA=1995\) tại \(a=2;b=35;c=\frac{57}{2}\)