Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi nha. Mk mún giúp lắm nhưng mk mới học lp 5 thui nên đọc đề ko hỉu gì hết đó.
1)
a) 3x = 4y \(\Rightarrow\frac{x}{4}=\frac{y}{3}\)\(\Rightarrow\frac{x}{8}=\frac{y}{6}\)( 1 )
5y = 6z \(\Rightarrow\frac{y}{6}=\frac{z}{5}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{8}=\frac{y}{6}=\frac{z}{5}=\frac{x+y+z}{8+6+5}=\frac{1}{19}\)
\(\Rightarrow x=\frac{8}{19};y=\frac{6}{19};z=\frac{5}{19}\)
b) \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\Rightarrow\frac{3x-3}{9}=\frac{4y-8}{16}=\frac{5z-15}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{3x-3}{9}=\frac{4y-8}{16}=\frac{5z-15}{25}=\frac{\left(3x-3\right)+\left(4y-8\right)+\left(5z-15\right)}{9+16+25}=\frac{-25}{50}=\frac{-1}{2}\)
\(\Rightarrow x=\frac{-1}{2};y=0;z=\frac{1}{2}\)
Bài 5:Giải:
Ta có: \(\left\{{}\begin{matrix}a+3c=2016\left(1\right)\\a+2b=2017\left(2\right)\end{matrix}\right.\)
Từ \(\left(1\right)\Leftrightarrow a=2016-3c\)
Lấy \(\left(2\right)-\left(1\right)\) ta được:
\(2b-3c=1\Leftrightarrow b=\dfrac{1+3c}{2}\)
Khi đó:
\(P=a+b+c=\left(2016-3c\right)+\dfrac{1+3c}{2}\) \(+\) \(c\)
\(=\left(2016+\dfrac{1}{2}\right)+\dfrac{-6c+3c+2c}{2}\)
\(=2016\dfrac{1}{2}-\dfrac{c}{2}\) Vì \(a,b,c\ge0\) nên:
\(P=2016\dfrac{1}{2}-\dfrac{c}{2}\le2016\dfrac{1}{2}\)
Vậy \(P_{max}=2016\dfrac{1}{2}\Leftrightarrow c=0\)