Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://l.facebook.com/l.php?u=https%3A%2F%2Fdiendan.hocmai.vn%2Fthreads%2Flai-mot-bai-hoi-bi-kho-ne.226600%2F&h=ATPqu0VSzda9HN6swPmBXeYI_mLVFweVVBz72hMQdgv8WnX0mStwGwBOxPLOstENmMST5KDKsbNuoFCvtOGM2CoqQpz94ahFl9MGizb0_iA8MRBBsDChfE7x3A22qDBUSKGjOjCJFPZu
Bài 5 nha:
\(a+\frac{1}{b}=b+\frac{1}{c}\Leftrightarrow a-b=\frac{1}{c}-\frac{1}{b}.\)
\(\Leftrightarrow\left(a-b\right)=\frac{b-c}{bc}_{\left(1\right)}\)
\(a+\frac{1}{b}=c+\frac{1}{a}\Leftrightarrow a-c=\frac{1}{a}-\frac{1}{b}\)
\(\Leftrightarrow\left(a-c\right)=\frac{b-a}{ab}_{\left(2\right)}\)
\(c+\frac{1}{a}=b+\frac{1}{c}\Leftrightarrow c-b=\frac{1}{c}-\frac{1}{a}\)
\(\Leftrightarrow\left(c-b\right)=\frac{a-c}{ac}_{\left(3\right)}\)
Nhân từng vế của (1) ; (2) và (3) , ta được :
\(\left(a-b\right)\left(a-c\right)\left(c-b\right)=\frac{\left(b-c\right)\left(b-a\right)\left(a-c\right)}{\left(abc\right)^2}\)
\(=\frac{\left(c-b\right)\left(a-b\right)\left(a-c\right)}{\left(abc\right)^2}\)
\(\Leftrightarrow\left(abc\right)^2=1\Leftrightarrow abc=1\)hoặc \(abc=\left(-1\right)\)
Bài 3:
Ta có : \(x^2+y^2+z^2=1\Leftrightarrow\left(x+y+z\right)^2\)
\(=1+2\left(xy+yz+zx\right)\Leftrightarrow1=1+2\left(xy+yz+zx\right)\)
\(\Leftrightarrow xy+yz+zx=0\)(*)
áp dụng kết quả sau :
Ta có : \(a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
Thấy vậy : \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b+c\left(ab+bc+ca\right)\right)-3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=\left(a+b+c\right)^33\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(=\left(a+b+c\right)\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
áp dụng vào bài toán, ta có :
\(x^3+y^3+z^3-3xyz=\frac{1}{2}\left(x+y+z\right)\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)
\(=\frac{1}{2}\left(x+y+z\right)\left(2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)\right)\)
\(\Leftrightarrow1-3xyz=\frac{1}{2}\times1\times2=1\Leftrightarrow xyz=0\)(**)
Mà \(x+y+z=1\)(***)
\(\Leftrightarrow\)x ; y ; z là 3 nghiệm của pt bậc 3 sau : \(U^3-U^2=0\)
\(\Leftrightarrow U=0\)hoặc \(U=1\)
=> 1 trong 3 phần tử x ; y ; z =1 ; 2 phần tử còn lại sẽ = 0
Do đó \(x+y^2+z^3=1\)
=> điều phải chứng minh.
a,PT 1 <=> (x-y)^2+(y-z)^2+(z-x)^2=0
=>x=y=z thay vào pt 2 ta dc x=y=z=3
c, xét x=y thay vào ta dc x=y=2017 hoặc x=y=0
Xét x>y => \(\sqrt{x}+\sqrt{2017-y}>\sqrt{y}+\sqrt{2017-x}\)
=>\(\sqrt{2017}>\sqrt{2017}\)(vô lí). TT x<y => vô lí. Vậy ...
d, pT 2 <=> x^2 - xy + y^2 = 2z = 2(x + y)
\(< =>x^2-x\left(y+2\right)+y^2-2y=0\). Để pt có no thì \(\Delta>0\)
<=> \(\left(y+2\right)^2-4\left(y^2-2y\right)\ge0\)
<=> \(-3y^2+12y+4\ge0\)<=>\(3\left(y-2\right)^2\le16\)
=> \(\left(y-2\right)^2\in\left\{1,2\right\}\). Từ đó tìm dc y rồi tìm nốt x
b,\(\hept{\begin{cases}x^3=y^3+9\\3x-3x^2=6y^2+12y\end{cases}}\).Cộng theo vế ta dc \(\left(x-1\right)^3=\left(y+2\right)^3\)=>x=y+3. Từ đó tìm dc x,y