Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-4,25-0,75\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-5\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.5.\frac{4}{5}\)
\(=\frac{7}{2}-2\)
\(=\frac{7}{2}-\frac{4}{2}\)
\(=\frac{3}{2}\)
\(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)
\(=\frac{3}{7}.\left(\frac{3}{2}+\frac{1}{2}-9\right)\)
\(=\frac{3}{7}.\left(2-9\right)\)
\(=\frac{3}{7}.\left(-7\right)\)
\(=-3\)
\(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^2\right)^{2017}.2^{2017}.\left(2^2\right)^{2018}.5^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^3\right)^{2017}.\left(2^3\right)^{2017}.2.5}=\frac{1}{5^4.2}=\frac{1}{1250}\)( tính nhẩm, ko chắc đúng )
1
a) \(3\frac{1}{2}-\frac{1}{2}\cdot\left(-4,25-\frac{3}{4}\right)^2\) : \(\frac{5}{4}\)
= \(3\cdot25:\frac{5}{4}\)
= \(3\cdot\left(25:\frac{5}{4}\right)\)
=\(3\cdot20\)
=60
b)=\(\frac{3}{7}\cdot\left(1\frac{1}{2}+0,5-9\right)\)
=\(\frac{3}{7}\cdot\left(-7\right)\)
=\(-3\)
c) =
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
Bài 1:
a) Ta có: \(\frac{-5}{8}+x=\frac{4}{9}\)
\(\Leftrightarrow x=\frac{4}{9}-\frac{-5}{8}=\frac{32}{72}-\frac{-45}{72}\)
hay \(x=\frac{77}{72}\)
Vậy: \(x=\frac{77}{72}\)
b) Ta có: \(1\frac{3}{4}\cdot x+1\frac{1}{2}=-\frac{4}{5}\)
\(\Leftrightarrow\frac{7}{4}\cdot x+\frac{3}{2}=-\frac{4}{5}\)
\(\Leftrightarrow\frac{7}{4}\cdot x=-\frac{4}{5}-\frac{3}{2}=-\frac{23}{10}\)
\(\Leftrightarrow x=\frac{-23}{10}:\frac{7}{4}=\frac{-23}{10}\cdot\frac{4}{7}\)
hay \(x=-\frac{46}{35}\)
Vậy: \(x=-\frac{46}{35}\)
c) Ta có: \(\frac{1}{4}+\frac{3}{4}x=\frac{3}{4}\)
\(\Leftrightarrow\frac{3}{4}x=\frac{2}{4}\)
\(\Leftrightarrow x=\frac{2}{4}:\frac{3}{4}=\frac{2}{4}\cdot\frac{4}{3}\)
hay \(x=\frac{2}{3}\)
Vậy: \(x=\frac{2}{3}\)
d) Ta có: \(x\cdot\left(\frac{1}{4}+\frac{1}{5}\right)-\left(\frac{1}{7}+\frac{1}{8}\right)=0\)
\(\Leftrightarrow x\cdot\frac{9}{20}-\frac{15}{56}=0\)
\(\Leftrightarrow x\cdot\frac{9}{20}=\frac{15}{56}\)
\(\Leftrightarrow x=\frac{15}{56}:\frac{9}{20}=\frac{15}{56}\cdot\frac{20}{9}\)
hay \(x=\frac{25}{42}\)
Vậy: \(x=\frac{25}{42}\)
e) Ta có: \(\frac{3}{35}-\left(\frac{3}{5}+x\right)=\frac{2}{7}\)
\(\Leftrightarrow\frac{3}{35}-\frac{3}{5}-x=\frac{2}{7}\)
\(\Leftrightarrow\frac{-18}{35}-x=\frac{2}{7}\)
\(\Leftrightarrow-x=\frac{2}{7}-\frac{-18}{35}=\frac{2}{7}+\frac{18}{35}=\frac{4}{5}\)
hay \(x=-\frac{4}{5}\)
Vậy: \(x=-\frac{4}{5}\)
f) Ta có: \(\frac{3}{7}+\frac{1}{7}:x=\frac{3}{14}\)
\(\Leftrightarrow\frac{1}{7}\cdot\frac{1}{x}=\frac{3}{14}-\frac{3}{7}=\frac{-3}{14}\)
\(\Leftrightarrow\frac{1}{x}=\frac{-3}{14}:\frac{1}{7}=-\frac{3}{14}\cdot7=-\frac{3}{2}\)
\(\Leftrightarrow x=\frac{1\cdot2}{-3}=\frac{2}{-3}=-\frac{2}{3}\)
Vậy: \(x=-\frac{2}{3}\)
g) Ta có: \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\2x-\frac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=\frac{1}{3}:2=\frac{1}{6}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{5};\frac{1}{6}\right\}\)
1) Chỉ tìm được Max thôi nhé
a) \(C=\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\le\frac{4}{5}+\frac{20}{8}=\frac{33}{10}\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|3x+5\right|=0\\\left|4y+5\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{5}{3}\\y=-\frac{5}{4}\end{cases}}\)
b) \(E=\frac{2}{3}+\frac{21}{\left(x+3y\right)^2+5\left|x+5\right|+14}\le\frac{2}{3}+\frac{21}{14}=\frac{13}{6}\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+3y\right)^2=0\\5\left|x+5\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=\frac{5}{3}\end{cases}}\)
2) Thì chỉ tìm được GTNN thôi nhé
a) \(A=5+\frac{-8}{4\left|5x+7\right|+24}\ge5-\frac{8}{24}=\frac{14}{3}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(4\left|5x+7\right|=0\Rightarrow x=-\frac{7}{5}\)
Vậy Min(A) = 14/3 khi x = -7/5
b) \(B=\frac{6}{5}-\frac{14}{5\left|6y-8\right|+35}\ge\frac{6}{5}-\frac{14}{35}=\frac{4}{5}\left(\forall y\right)\)
Dấu "=" xảy ra khi: \(5\left|6y-8\right|=0\Rightarrow x=\frac{4}{3}\)
Vậy Min(B) = 4/5 khi x = 4/3