K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2018

khó quá 

em mới học lớp 6 hihi!

25 tháng 10 2018

a) Thay m = 3 vào đẳng thức đó ta có:

x2 - 6x + 4 = 0

\(\Leftrightarrow\) (x - 3)2 - 5 = 0

\(\Leftrightarrow\) (x - 3)2 = 5

\(\Leftrightarrow\) \(\orbr{\begin{cases}x-3=\sqrt{5}\\x-3=-\sqrt{5}\end{cases}}\)

\(\Leftrightarrow\) \(\orbr{\begin{cases}x=\sqrt{5}+3\\x=3-\sqrt{5}\end{cases}}\)

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

7 tháng 6 2015

a) \(\Delta=4m^2-4\left(3m-4\right)=4m^2-12m+16=\left(2m-3\right)^2+7>0\)với mọi m=> pt (1) có nghiệm phân biệt với mọi m

b)áp dụng đ.lí Viét ta có: \(x_1+x_2=2m\)\(x_1.x_2=m^2+3m-4\)

\(x_1^2+x_2^2=\left(x1+x2\right)^2-2x1.x2=4m^2-2\left(m^2+3m-4\right)=4m^2-2m^2-6m+8\)

    \(=2\left(m^2+3m-4\right)=2\left[\left(m+\frac{3}{2}\right)^2-4-\frac{9}{4}\right]=2\left[\left(m+\frac{3}{2}\right)^2-\frac{25}{4}\right]\)

A đặt giá trị nhỏ nhất khi m = -3/2

2 tháng 7 2020

ms học lớp 5 nên giải câu a )

\(-x^2+\left(2m-2\right)x-m^2+3m-3=0\)

thay \(m=2\)vào PT(1)

ta có \(-x^2+\left(2.2-2\right)x-2^2+3.2-3=0\)

   \(\Leftrightarrow-x^2+2x-4+6-3=0\)

\(\Leftrightarrow-x^2+2x-4+3=0\)

\(\Leftrightarrow-x^2+2x-4=-3\)

\(\Leftrightarrow-x^2+2x=1\)

....

12 tháng 6 2015

a) Tự giải

b) xét denta, đặt điều kiện của m

xét viet x1+x2 vs x1.x2

từ x1^3x2 + x1x2^3 =-11 => x1x2(x1^2+x2^2) = -11 =>x1x2((x1+x2)^2)-2x1x2) =-11 

thế viet vao giải, nhơ so sánh đk

17 tháng 3 2020

a) Hoành độ giao điểm của ( P ) và ( d ) là nghiệm phương trình:

\(x^2=2mx-2m+3\) (2)

<=> \(x^2-2mx+2m-3=0\)

Có: \(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m-1\right)^2+2>0\)với mọi m

=> Với mọi m phương trình (2) luôn có hai nghiệm phân biết

=> Với mọi m (d) luôn cắt ( P ) tại hai điểm phân biệt 

___________

c) Để phương trình (1) có nghiệm điều kiện là: \(\Delta'=\left(k-1\right)^2-\left(k-3\right)=k^2-3k+4=\left(k-\frac{3}{2}\right)^2+\frac{7}{4}>0\)với mọi m

=> Phương trình (1) có 2 nghiệm \(x_1;x_2\)với mọi m 

Áp dụng định lí viets ta có: \(\hept{\begin{cases}x_1+x_2=2\left(k-1\right)\\x_1.x_2=k-3\end{cases}}\)mà \(x_1=\frac{5}{3}x_2\)

nên : \(\frac{5}{3}x_2+x_2=2k-2\)<=> \(\frac{8}{3}x_2=2k-2\)<=> \(x_2=\frac{3}{4}\left(k-1\right)\)

khi đó: \(x_1=\frac{5}{3}x_2=\frac{5}{4}\left(k-1\right)\)

Suy ra \(x_1.x_2=k-3\)<=> \(\frac{15}{16}\left(k-1\right)^2=k-3\)

<=> \(15k^2-46k+63=0\)(3)

có: \(\Delta\)<0 

=> (3) vô nghiệm

=> không tồn tại k