Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(=\sqrt{36}=6\)
2: \(=\sqrt{\left(15-9\right)\left(15+9\right)}=\sqrt{24\cdot6}=12\)
3: \(=3\sqrt{5}-1-3\sqrt{5}-1=-2\)
4: \(=3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
5: \(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)=5-4=1\)
câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :
\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )
\(=\sqrt{6}\)
\(1.\sqrt{\left(5+\sqrt{7}\right)^2}-\sqrt{8-2\sqrt{7}}=5+\sqrt{7}-\sqrt{7-2\sqrt{7}+1}=5+\sqrt{7}-\sqrt{7}+1=6\)
\(2.\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{4-2\sqrt{3}}=\sqrt{3}+1-\sqrt{3-2\sqrt{3}+1}=\sqrt{3}+1-\sqrt{3}+1=2\)
\(3.VT=\sqrt{11}-\sqrt{20-6\sqrt{11}}=\sqrt{11}-\sqrt{11-2.3\sqrt{11}+9}=\sqrt{11}-\sqrt{11}+3=3=VP\)
Vậy , đẳng thức được chứng minh .
\(4.VT=\sqrt{41+12\sqrt{5}}-\sqrt{41-12\sqrt{5}}=\sqrt{36+2.6\sqrt{5}+5}-\sqrt{36-2.6\sqrt{5}+5}=6+\sqrt{5}-6+\sqrt{5}=2\sqrt{5}=VP\)
Vậy , đẳng thức được chứng minh .
1) \(\left(\sqrt{6}-\sqrt{8}\right)\left(\sqrt{6}+\sqrt{8}\right)\)
\(=\left(\sqrt{6}\right)^2-\left(\sqrt{8}\right)^2\)
\(=6-8=-2\)
2) \(\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
\(=3^2-\left(\sqrt{5}\right)^2\)
\(=9-5=4\)
3) \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
\(=\sqrt{4-4\sqrt{3}+3}+\sqrt{4+4\sqrt{3}+3}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
4) Xét ta thấy: \(2\sqrt{3}=\sqrt{12}< \sqrt{16}=4\)
=> \(2\sqrt{3}-4< 0\) => vô lý không tm đk căn