Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x = 3-12. 3-15 . 332 =35
x = 5
b) 2x = 29 .2-30. 29 = 2-12
x = -12
c) 2x = 214 / 29 = 25
x = 5
1: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{18}\)
=>4x=18
hay x=9/2
2: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{108}\)
=>4x=108
hay x=27
3: \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{4x}=\left(\dfrac{1}{3}\right)^{12}\)
=>4x=12
hay x=3
h) \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x+5^x.5^2=650\)
\(\Leftrightarrow5^x\left(1+25\right)=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow x=2\)
haizzz,đăng ít thôi,chứ nhìn hoa mắt quá =.=
bây định làm j ở chỗ này vậy??? có j ib ns vs nhao chớ sao ns ở đây
\(a,7^6+7^5-7^4⋮55\)
\(7^4\left(7^2+7-1\right)⋮55\)
\(7^4\times55⋮55\left(dpcm\right)\)
\(8^{12}-2^{33}-2^{30}\)
\(=8^{12}-\left(2^3\right)^{11}-\left(2^3\right)^{10}\)
\(=8^{12}-8^{11}-8^{10}\)
\(=8^{10}\left(8^2-8-1\right)\)
\(=8^{10}\times55⋮55\left(dpcm\right)\)
a)\(\left(-3\right)^{x+3}=-\frac{1}{27}\)
\(\left(-3\right)^{x+3}=\left(-\frac{1}{3}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-\frac{3^0}{3^1}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-3^{-1}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-3\right)^{-3}\)
\(\Rightarrow x+3=-3\)
\(\Rightarrow x=-6\)
b)\(\left(-6\right)^{2x+2}=\frac{1}{36}\)
\(\left(-6\right)^{2x+2}=\left(-\frac{1}{6}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-\frac{6^0}{6^1}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-6^{-1}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-6\right)^{-2}\)
\(\Rightarrow2x+2=-2\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=-2\)
c)\(\left(-3\right)^{x+5}=\frac{1}{81}\)
\(\left(-3\right)^{x+5}=\left(-\frac{1}{3}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-\frac{3^0}{3^1}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-3^{-1}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-3\right)^{-4}\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
d)\(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^6\)
\(\left[\left(\frac{1}{3}\right)^2\right]^x=\left[\left(\frac{1}{3}\right)^3\right]^6\)
\(\left(\frac{1}{3}\right)^{2x}=\left(\frac{1}{3}\right)^{18}\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
e)\(\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)
\(\left[\left(\frac{2}{3}\right)^2\right]^x=\left[\left(\frac{2}{3}\right)^3\right]^6\)
\(\left(\frac{2}{3}\right)^{2x}=\left(\frac{2}{3}\right)^{18}\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
3. Từ \(\dfrac{x-2}{27}=\dfrac{3}{x-2}\Rightarrow\left(x-2\right)^2=81\)
\(\Rightarrow\left(x-2\right)^2=\left(\pm9\right)^2\\ \Rightarrow\left[{}\begin{matrix}x-2=-9\\x-2=9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=11\end{matrix}\right.\)
Vậy x = -7 hoặc x = 11
4. Từ \(\dfrac{2x+5}{9-2x}=\dfrac{2}{5}\)
\(\Rightarrow5\left(2x+5\right)=2\left(9-2x\right)\\ \Leftrightarrow10x+25=18-4x\\ \Leftrightarrow14x=-7\\ \Rightarrow x=-\dfrac{1}{2}\)
5. Từ \(\dfrac{x-7}{x+8}=\dfrac{x-8}{x+9}\)
\(\Rightarrow\left(x-7\right)\left(x+9\right)=\left(x-8\right)\left(x+8\right)\\ \Leftrightarrow x^2+2x-63=x^2-64\\ \Leftrightarrow2x=-1\\ \Rightarrow x=-\dfrac{1}{2}\)
\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)
\(\Rightarrow2B=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)
\(\Rightarrow2B-B=1-\left(\dfrac{1}{2}\right)^{99}\)
\(B=1-\left(\dfrac{1}{2}\right)^{99}\)
\(2,\)
\(a,\dfrac{45^{10}.2^{10}}{75^{15}}\)
\(=\dfrac{5^{10}.9^{10}.2^{10}}{25^{15}.3^{15}}\)
\(=\dfrac{5^{10}.3^{20}.2^{10}}{5^{30}.3^{15}}\)
\(=\dfrac{5^{10}.3^{15}.\left(3^5.2^{10}\right)}{5^{10}.3^{15}.\left(5^{20}\right)}\)
\(=\dfrac{3^5.2^{10}}{5^{20}}\)
\(b,\dfrac{2^{15}.9^4}{6^3.8^3}\)
\(=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)
\(c,\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{4^{10}.2^{10}+4^{10}}{4^4.2^4+4^4.4^7}=\dfrac{4^4.\left(4^6.2^{10}+4^6\right)}{4^4.\left(2^4+4^7\right)}\)
\(=\dfrac{4^{11}+4^6}{4^8.4^7}=\dfrac{4^6.\left(4^5+1\right)}{4^6.\left(4^2-4\right)}=\dfrac{1024+1}{16-4}=\dfrac{1025}{12}\)
\(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)
\(3,\)
\(a,\left(2x+4\right)^2=\dfrac{1}{4}\)
\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x+4=\dfrac{1}{2}\\2x+4=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-4=\dfrac{-7}{2}\\2x=\dfrac{-1}{2}-4=\dfrac{-9}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-7}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{-7}{4};\dfrac{-9}{4}\right\}\)
\(b,\left(2x-3\right)^2=36\)
\(\left(2x-3\right)^2=6^2=\left(-6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=6+3=9\\2x=-6+3=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{9}{2};\dfrac{-3}{2}\right\}\)
\(c,5^{x+2}=628\)
\(5^{x+2}=5^4\)
\(\Rightarrow x+2=4\)
\(\Rightarrow x=4-2=2\)
Vậy \(x=2\)
\(d,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}.\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
Vậy \(x\in\left\{0;1;2\right\}\)
Bài 1:
B= \(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)
2B= \(2.[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}]\)
2B= \(1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{98}\)
⇒2B-B= \(1-\left(\dfrac{1}{2}\right)^{99}\)
B= 1
Vậy B=1
Bài 2:
a, \(\dfrac{45^{10}.2^{10}}{75^{15}}\)= \(\dfrac{\left(3^2.5\right)^{10}.2^{10}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.2^{10}}{3^{15}.5^{30}}=\dfrac{3^5.2^{10}}{5^{20}}\)
b, \(\dfrac{2^{15}.9^4}{6^3.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)
c,\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2.4\right)^{10}+4^{10}}{\left(2.4\right)^4+4^{11}}=\dfrac{2^{10}.4^{10}+4^{10}}{2^4.4^4+4^{11}}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.4^5}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(4^5+1\right)}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(2^{10}+1\right)}=4^4=256\)
d, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)
Bài 3:
a, \(\left(2x+4\right)^2=\dfrac{1}{4}\)
\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2\)
\(2x+4=\dfrac{1}{2}\)
\(2x=\dfrac{1}{2}-4\)
\(2x=-\dfrac{7}{2}\)
\(x=-\dfrac{7}{2}:2\)
\(x=-\dfrac{7}{2}.\dfrac{1}{2}\)
\(x=-\dfrac{7}{4}\)
b, \(\left(2x-3\right)^2=36\)
\(\left(2x-3\right)^2=6^2\)
\(2x-3=6\)
\(2x=9\)
\(x=\dfrac{9}{2}\)
c, \(5^{x+2}=625\)
\(5^{x+2}=5^4\)
\(x+2=4\)
\(x=2\)
1.Tính
a.\(\dfrac{7}{23}\left[(-\dfrac{8}{6})-\dfrac{45}{18}\right]=\dfrac{7}{23}.-\dfrac{12}{6}=-\dfrac{7}{6}\)
b.\(\dfrac{1}{5}\div\dfrac{1}{10}-\dfrac{1}{3}(\dfrac{6}{5}-\dfrac{9}{4})=2-(-\dfrac{7}{20})=\dfrac{47}{20}\)
c.\(\dfrac{3}{5}.(-\dfrac{8}{3})-\dfrac{3}{5}\div(-6)=-\dfrac{3}{2}\)
d.\(\dfrac{1}{2}.(\dfrac{4}{3}+\dfrac{2}{5})-\dfrac{3}{4}.(\dfrac{8}{9}+\dfrac{16}{3})=-\dfrac{19}{5}\)
e.\(\dfrac{6}{7}\div(\dfrac{3}{26}-\dfrac{3}{13})+\dfrac{6}{7}.(\dfrac{1}{10}-\dfrac{8}{5})=-\dfrac{61}{7}\)
Bài 2
a.\(1^2_5x+\dfrac{3}{7}=\dfrac{4}{5}\)
\(x=\dfrac{13}{49}\)
b.\(\left|x-1,5\right|=2\)
Xảy ra 2 trường hợp
TH1
\(x-1,5=2\)
\(x=3,5\)
TH2
\(x-1,5=-2\)
\(x=-0,5\)
Vậy \(x=3,5\) hoặc \(x=-0,5\) .
Ngại làm quá trời ơi,lần sau bn tách ra nhá làm vậy mỏi tay quá.
a: \(\Leftrightarrow4^x\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)=4^8\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)\)
=>4^x=4^8
=>x=8
b: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+2^x\cdot2=2^{10}\left(2^2+1\right)\)
=>2^x=2^11
=>x=11
c: =>1/6*6^x+6^x*36=6^15(1+6^3)
=>6^x=6*6^15
=>x=16
d: \(\Leftrightarrow8^x\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)=8^9\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)\)
=>x=9
sao bạn lại phải cầu xin
1) MK không chép lại đề nữa nhé!
3x = (32 ) -6 . (33 ) -5 . (34)8
3 x = 3-12.3-15 . 332
3x= 3-27.332
3x= 35
=>x= 5
Vậy x=5