K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2018

Ta có :

x-y-z=0 => y+z=x (*(

Thay (*) và đa thức M ta có :

M=\(xyz-xy^2-xz^2=\left(y+z\right)yz-\left(y+z\right)y^2-\left(y+z\right)z^2\)

=\(y^2z+yz^2-y^3-zy^2-z^2y-z^3\)

=\(\left(y^2z-y^2z\right)-\left(z^2y-z^2y\right)-\left(y^3+z^3\right)\)

=\(-\left(y^3+z^3\right)\)

\(-\left(y^3+z^3\right)\) là số đối của \(\left(y^3+z^3\right)\) nên M và N là 2 đa thức đối nhau.

5 tháng 6 2018

Câu 1 :

\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)

=\(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+.......+\dfrac{1}{2012}\right)\)=\(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{1006}\right)\)

\(=\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2013}\)=P

Vậy S=P

19 tháng 7 2018

\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2012}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{2012}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{1006}\right)\)

\(=\dfrac{1}{1007}+\dfrac{1}{1008}+....+\dfrac{1}{2013}=P\)

Vậy \(S=P\)

31 tháng 8 2017

Ta có :

\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+..........+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)

\(=\left(1+\dfrac{1}{3}+..........+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+......+\dfrac{1}{2012}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+......+\dfrac{1}{2012}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+......+\dfrac{1}{1006}\right)\)

\(=\dfrac{1}{1007}+\dfrac{1}{1008}+..........+\dfrac{1}{2013}\)

\(\Leftrightarrow S-P=\left(\dfrac{1}{1007}+\dfrac{1}{1008}+....+\dfrac{1}{2013}\right)-\left(\dfrac{1}{1007}+\dfrac{1}{1008}+....+\dfrac{1}{2013}\right)\)

\(\Leftrightarrow S-P=0\)

\(\Leftrightarrow\left(S-P\right)^{2013}=0^{2013}=0\)

3 tháng 9 2017

\(1+\dfrac{1}{2}+...+\dfrac{1}{2012}+\dfrac{1}{2013}-2\times\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2010}+\dfrac{1}{2012}\right)\)

\(\Rightarrow1+\dfrac{1}{2}+...+\dfrac{1}{2012}+\dfrac{1}{2013}-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1005}+\dfrac{1}{1006}\right)\)

\(\Rightarrow\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)

\(\Rightarrow S=P\Rightarrow S-P=0\Rightarrow\left(S-P\right)^{2013}=1\)

25 tháng 3 2017

Ta có: \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1006}\right)\)

\(=\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)

\(\Rightarrow P-S=\left(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2013}\right)=0\)

\(\Rightarrow\left(P-S\right)^{2013}=0^{2013}=0\)

Vậy \(\left(P-S\right)^{2013}=0\)

30 tháng 4 2018

Hay quá

5 tháng 4 2018

\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\\ =\left(1+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}\right)\\ =\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\\ \Rightarrow S-P=0\\ \Rightarrow\left(S-P\right)^{2018}=0\)

27 tháng 8 2017

B=\(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)

=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}+\dfrac{1}{1007}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\)- \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}\right)\)

=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}+\dfrac{1}{1007}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\)-2\(\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)

=1-\(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{2012}+\dfrac{1}{2013}\)=S

( A-B)2013 =0

Chúc ban học tốt nhé...!

1 tháng 3 2017

Câu 3:

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)

\(\Rightarrow S=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}-\frac{1}{4}-...-\frac{1}{2012}\right)\)

\(\Rightarrow S=\left(1+\frac{1}{2}+...+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)

\(\Rightarrow S=\left(1+\frac{1}{2}+...+\frac{1}{2013}\right)-1-\frac{1}{2}-...-\frac{1}{2012}\)

\(\Rightarrow S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\)

\(\Rightarrow S=P\)

\(\Rightarrow S-P=0\)

\(\Rightarrow\left(S-P\right)^{2013}=0^{2013}=0\)

Vậy \(\left(S-P\right)^{2013}=0\)

bài 1 a. tính tổng M=\(\dfrac{1}{2}\)\(x^5\)y-\(\dfrac{3}{4}\)\(x^5\)y+\(x^5\)y b.Tính giá trị của biểu thức M tại x=-1,y=\(\dfrac{1}{3}\) c. với giá trị nào của x,y thì M=0 bài 2: cho biểu thức P=\(\dfrac{x+y}{z+t}\)+\(\dfrac{y+z}{t+x}\)+\(\dfrac{z+t}{x+y}\)+\(\dfrac{t+x}{z+y}\) Tìm giá trị của P. Biết rằng: \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\) bài 3: Tính giá trị của biểu...
Đọc tiếp

bài 1

a. tính tổng M=\(\dfrac{1}{2}\)\(x^5\)y-\(\dfrac{3}{4}\)\(x^5\)y+\(x^5\)y

b.Tính giá trị của biểu thức M tại x=-1,y=\(\dfrac{1}{3}\)

c. với giá trị nào của x,y thì M=0

bài 2:

cho biểu thức P=\(\dfrac{x+y}{z+t}\)+\(\dfrac{y+z}{t+x}\)+\(\dfrac{z+t}{x+y}\)+\(\dfrac{t+x}{z+y}\)

Tìm giá trị của P. Biết rằng:

\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)

bài 3:

Tính giá trị của biểu thức

\(\dfrac{3a-b}{2a+7}+\dfrac{3b-a}{2b-7}v\text{ới}\) a-b=7 và a\(\ne\)-3,5;b\(\ne\)3,5

bài 4:

Tính nhanh giá trị của biểu thức sau :

M=\(3\dfrac{1}{117}.4\dfrac{1}{119}-1\dfrac{116}{117}.5\dfrac{118}{119}-\dfrac{5}{119}\)

Bài 5: cho 3 số a,b,c thỏa mãn abc=1 tính

S=\(\dfrac{1}{1+a+ab}+\dfrac{1}{1+b+bc}+\dfrac{1}{1+c+ca}\)

bài 6:

tìm các số nguyên dương a,b,c biết rằng

\(a^3-b^3-c^3=3ab\) (1)

\(a^2\)=2(b+c) (2)

bài 7

cho A=\(x^{2014}-2013x^{2013}-2013x^{2012}-2013x^{2011}-...-2013x+1\)

tính giá trị của A khi x=2014

1

Câu 7:

x=2014 nên x-1=2013

\(A=x^{2014}-x^{2013}\left(x-1\right)-x^{2012}\left(x-1\right)-...-x\left(x-1\right)+1\)

\(=x^{2014}-x^{2014}+x^{2013}-x^{2013}+x^{2012}-...-x^2+x+1\)

=x+1

=2014+1=2015