K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

 Mk săpp thi rồi nên hơi nhiều bài mong mn giúp mk !!!

31 tháng 10 2021

\(1,\\ a,3^{2^3}=3^8>3^6=\left(3^2\right)^3\\ b,\left(-8\right)^9=\left(-2\right)^{27}< \left(-2\right)^{25}=\left(-32\right)^5\\ c,2^{21}=8^7< 9^7=3^{14}\\ 2,\)

\(a,\) Áp dụng tcdtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

\(b,\) Sửa: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow a=bk;c=dk\)

\(\Leftrightarrow\dfrac{ab}{cd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2};\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2}{d^2}\\ \LeftrightarrowĐpcm\)

a: \(A=\left(5xy-2xy+1.3xy\right)+3x-2y-3.5y^2\)

\(=4.3xy+3x-2y-3.5y^2\)

b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)

\(=-\dfrac{7}{8}ab^2+\dfrac{3}{8}a^2b\)

c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)

\(=7a^2b-11b^2+9c^2\)

a: \(=\left(15x^2y^3-12x^2y^3\right)+\left(7x^2-12x^2\right)+\left(-8x^3y^2+11x^3y^2\right)\)

\(=3x^2y^3-5x^2+3x^3y^2\)

bậc là 5

b: \(=\left(3x^5y-\dfrac{1}{2}x^5y\right)+\left(\dfrac{1}{3}xy^4+2xy^4\right)+\left(\dfrac{3}{4}x^2y^3-x^2y^3\right)\)

\(=\dfrac{5}{2}x^5y+\dfrac{7}{3}xy^4-\dfrac{1}{4}x^2y^3\)

Bậc là 6

c: \(=5xy-2xy+4xy-y^2+3x-2y\)

\(=-y^2+3x-2y+7xy\)

Bậc là 2

14 tháng 4 2018

a) \(A=5xy-3,5y^2-2xy+1,3xy+3x-2y\)

\(=\left(5xy-2xy+1,3xy\right)-3,5y^2+3x-2y\)

\(=-3,5y^2+4,3xy+3x-2y\)

b) \(B=\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2+\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b-\dfrac{1}{2}ab^2\)

\(=\left(\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2-\dfrac{1}{2}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)

\(=-\dfrac{7}{8}ab^2+\dfrac{3}{8}a^2b\)

c) \(2a^2b-8b^2+5a^2b+5c^2-3b^2+4c^2\)

\(=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)

\(=7a^2b-11b^2+9c^2\)

10 tháng 7 2017

1. Tìm n, biết:

a) \(\dfrac{-32}{\left(-2\right)^n}=4\)

\(\Rightarrow\dfrac{\left(-2\right)^5}{\left(-2\right)^n}=\left(-2\right)^2\)

\(\Rightarrow\left(-2\right)^n.\left(-2\right)^2=\left(-2\right)^5\)

(-2)n + 2 = (-2)5

n + 2 = 5

n = 5 - 2

n = 3.

b) \(\dfrac{8}{2^n}=2\)

\(\Rightarrow\dfrac{2^3}{2^n}=2\)

\(\Rightarrow\) 2n . 2 = 23

n + 1 = 3

n = 3 - 1

n = 2.

c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)

2n - 1 = 3

2n = 3 + 1

2n = 4

n = 4 : 2

n = 2.

2. Tính:

a) \(\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{4}\right)^2\)

\(=\left(\dfrac{1}{2}\right)^3.\left[\left(\dfrac{1}{2}\right)^2\right]^2\)

\(=\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{2}\right)^4\)

\(=\left(\dfrac{1}{2}\right)^7\)

\(=\dfrac{1}{128}\)

b) 273 : 93

= (33)3 : (32)3

= 39 : 36

= 33

= 27

c) 1252 : 253

= (53)2 : (52)3

= 56 : 56

= 1

d) \(\dfrac{27^2.8^5}{6^6.32^3}\)

\(=\dfrac{\left(3^3\right)^2.\left(2^3\right)^5}{6^6.\left(2^5\right)^3}\)

\(=\dfrac{3^6.2^{15}}{6^6.2^{15}}\)

\(=\dfrac{3^6}{6^6}\)

\(=\dfrac{1}{64}.\)

10 tháng 7 2017

B2 :

b) 27\(^3\): 9\(^3\)= (27:9)\(^3\)= 3\(^3\)

c) 125\(^2\): 25\(^3\)= 15625 : 15625 = 1

AH
Akai Haruma
Giáo viên
9 tháng 8 2018

Bài 2:

\(A=\frac{8^5(-5)^8+(-2)^5.10^9}{2^{16}.5^7+20^8}\) \(=\frac{(2^3)^5(-5)^8+(-2)^5.2^9.5^9}{2^{16}.5^7+(2^2.5)^8}\)

\(=\frac{2^{15}.5^8-2^5.2^9.5^9}{2^{16}.5^7+2^{16}.5^8}\)

\(=\frac{2^{14}.5^8(2-5)}{2^{16}.5^7(1+5)}\)

\(=\frac{5(-3)}{2^2.6}=\frac{-5}{8}\)

Bài 3:
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\)

Thay vào:

\(\frac{5a+3b}{5a-3b}=\frac{5bt+3b}{5bt-3b}=\frac{b(5t+3)}{b(5t-3)}=\frac{5t+3}{5t-3}\)

\(\frac{5c+3d}{5c-3d}=\frac{5dt+3d}{5dt-3d}=\frac{d(5t+3)}{d(5t-3)}=\frac{5t+3}{5t-3}\)

Do đó: \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) (đpcm)

AH
Akai Haruma
Giáo viên
9 tháng 8 2018

Bài 4:

Ta có:

\(A=3+3^2+3^3+3^4+...+3^{100}\)

\(=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+....+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+...+3^{97}(1+3+3^2+3^3)\)

\(=3.40+3^5.40+....+3^{97}.40\)

\(=120(1+3^4+....+3^{96})\vdots 120\)

Ta có đpcm.

26 tháng 10 2018

Câu a, b, c giống dạng nhau nên mình làm một câu a và câu d thôi nha, bạn tham khảo ^^

Giải:

a) \(a=\dfrac{b}{2}=\dfrac{c}{3}\)

Áp dụng tính chất của dãy tỉ sô bằng nhau:

\(a=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a-b+c}{1-2+3}=\dfrac{10}{2}=5\)

\(\Rightarrow\left\{{}\begin{matrix}a=5.1=5\\b=2.5=10\\c=3.5=15\end{matrix}\right.\)

b) \(a:b:c=3:4:5\)

\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)

\(\Rightarrow\dfrac{a^2}{9}=\dfrac{b^2}{16}=\dfrac{c^2}{25}\)

\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}\)

Áp dụng tính chất của dãy tỉ sô bằng nhau:

\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}=\dfrac{2a^2+2b^2-3c^2}{18+32-75}=\dfrac{-100}{-25}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2=\dfrac{4.18}{2}=36\\b^2=\dfrac{4.32}{2}=64\\c^2=\dfrac{4.75}{3}=100\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\pm6\\b=\pm8\\c=\pm10\end{matrix}\right.\)

5 tháng 8 2017

4. \(1^2+2^2+3^2+...+10^2+11^2=506\)

Ta có: \(2^2+4^2+6^2+...+20^2+22^2\)

\(=2^2.1^2+2^2.2^2+2^2.3^2+...+2^2.10^2+2^2.11^2\)

\(=2^2\left(1^2+2^2+3^2+...+10^2+11^2\right)\)

\(=2^2.506=2024\)

Vậy....

5 tháng 8 2017

1.

Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

\(\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{a^2-b^2+2c^2}{4-9+32}=\dfrac{108}{27}=4\)

\(\Rightarrow a^2=16\)

\(\Rightarrow b^2=36\)

\(\Rightarrow c^2=64\)

\(\Rightarrow a=\pm4\) , \(b=\pm6\) , \(c=\pm8\)

4 tháng 11 2017

a)\(\left(\dfrac{1}{2}\right)^n=\dfrac{1}{32}\)

=>\(\left(\dfrac{1}{2}\right)^n=\left(\dfrac{1}{2}\right)^5\)

=>n=5

b)\(\left(\dfrac{343}{125}\right)=\left(\dfrac{7}{5}\right)^n\)

=>\(\left(\dfrac{7}{5}\right)^3=\left(\dfrac{7}{5}\right)^n\)

=>n=3

c)\(\dfrac{16}{2^n}=2\)

=>2n=\(\dfrac{16}{2}\)

=>2n=8

=>2n=23

=>n=3

d)\(\dfrac{\left(-3\right)^n}{81}=-27\)

=>(-3)n=-27.81

=>(-3)n=-2187

=>(-3)n=(-3)7

=>n=7

e)8n:2n=4

=>(23)n:2n=4

=>23n:2n=4

=>23n-n=4

=>22n=4

=>22n=22

=>2n=2

=>n=1

f)32.3n=35

=>3n=35:32

=>3n=35-2

=>3n=33

=>n=3

g) (22:4).2n=4

=>1.2n=22

=>n=2

h)3-2.34.3n=37

=>\(\left(\dfrac{1}{3}\right)^2\).34.3n=37

=>32.3n=37

=>32+n=37

=>2+n=7

=>n=5