Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{x-5}{x-3}>0\)
=>x-5>0 hoặc x-3<0
=>x>5 hoặc x<3
b: \(\dfrac{x+8}{x-9}< 0\)
=>x+8>0 và x-9<0
=>-8<x<9
c: \(\dfrac{x+1}{2017}+\dfrac{x+2}{2016}+\dfrac{x+3}{2015}+\dfrac{x+4}{2014}+4=0\)
\(\Leftrightarrow\left(\dfrac{x+1}{2017}+1\right)+\left(\dfrac{x+2}{2016}+1\right)+\left(\dfrac{x+3}{2015}+1\right)+\left(\dfrac{x+4}{2014}+1\right)=0\)
=>x+2018=0
hay x=-2018
\(a,\left(\frac{3}{8}+-\frac{3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
= \(\left(-\frac{3}{8}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
= \(\frac{5}{24}:\frac{5}{6}+\frac{1}{2}\)
= \(\frac{1}{4}+\frac{1}{2}\)
= \(\frac{3}{4}\)
b)\(-\frac{7}{3}.\frac{5}{9}+\frac{4}{9}.\left(-\frac{3}{7}\right)+\frac{17}{7}\)
=\(-\frac{35}{27}+\left(-\frac{4}{21}\right)+\frac{17}{7}\)
= \(-\frac{35}{27}+\frac{47}{21}\)
= \(\frac{178}{189}\)
c) \(\frac{117}{13}-\left(\frac{2}{5}+\frac{57}{13}\right)\)
= \(\frac{117}{13}-\frac{311}{65}\)
= \(\frac{274}{65}\)
d) \(\frac{2}{3}-0,25:\frac{3}{4}+\frac{5}{8}.4\)
= \(\frac{2}{3}-\frac{1}{4}:\frac{3}{4}+\frac{5}{8}.4\)
= \(\frac{2}{3}-\frac{1}{3}+\frac{5}{2}\)
= \(\frac{1}{3}+\frac{5}{2}\)
= \(\frac{17}{6}\)
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}-\frac{5}{4}\cdot\frac{13}{99}+\frac{5}{99}\cdot\frac{1}{4}\)
\(A=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)-\frac{13}{4}\cdot\frac{5}{99}+\frac{5}{99}\cdot\frac{1}{4}\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{5}{99}\cdot\left(\frac{13}{4}-\frac{1}{4}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)-\frac{5}{99}\cdot3\)
\(A=\frac{1}{2}\cdot\frac{32}{99}-\frac{5}{33}\)
\(A=\frac{16}{99}-\frac{5}{33}=\frac{1}{99}\)
Bài 1:
a)\(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(0,2\cdot4\right)^5}{\left(0,2\cdot2\right)^6}=\frac{\left(0,2\right)^5\cdot\left(2^2\right)^5}{\left(0,2\right)^6\cdot2^6}=\frac{\left(0,2\right)^5\cdot2^{10}}{\left(0,2\right)^6\cdot2^6}=\frac{2^4}{0,2}=\frac{16}{\frac{2}{10}}=80\)
b)\(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}=\frac{2^{20}}{2^{12}}=256\)
Bài 2:
a)\(2^{x-1}=16\)
\(\Rightarrow2^{x-1}=2^4\)
\(\Rightarrow x-1=4\Rightarrow x=5\)
b)\(\left(x-1\right)^2=25\)
\(\Rightarrow\left(x-1\right)^2=5^2=\left(-5\right)^2\)
\(\Rightarrow x-1=5\) hoặc \(x-1=-5\)
\(\Rightarrow x=6\) hoặc \(x=-4\)
Vậy \(x=6\) hoặc \(x=-4\)
c)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)
\(\Rightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+6}=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^4\right]\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\1=\left(x-1\right)^4\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\\left(x-1\right)^4=\left(-1\right)^4=1^4\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x-1=1\\x-1=-1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2\\x=0\end{array}\right.\)
d)\(\left(x+20\right)^{100}+\left|y+4\right|=0\left(1\right)\)
Ta thấy: \(\begin{cases}\left(x+20\right)^{100}\ge0\\\left|y+4\right|\ge0\end{cases}\)
\(\Rightarrow\left(x+20\right)^{100}+\left|y+4\right|\ge0\left(2\right)\)
Từ (1) và (2) suy ra \(\begin{cases}\left(x+20\right)^{100}=0\\\left|y+4\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x+20=0\\y+4=0\end{cases}\)\(\Rightarrow\begin{cases}x=-20\\y=-4\end{cases}\)