K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

Với a\(\ge\)0,ta có

A=\(3\sqrt{5a}-\sqrt{20a}+4\sqrt{45a}+\sqrt{a}\)

A=\(3\sqrt{5a}-\sqrt{4.5a}+4\sqrt{9.5a}+\sqrt{a}\)

A=\(3\sqrt{5a}-2\sqrt{5a}+12\sqrt{5a}+\sqrt{a}\)

A=\(13\sqrt{5a}+\sqrt{a}\)

16 tháng 7 2019

ko có j

4 tháng 7 2017

\(3\sqrt{5a}-2\sqrt{5a}+12\sqrt{5a}+\sqrt{a}\\ =\sqrt{5a}\left(3-2+12\right)+\sqrt{a}=13\sqrt{5a}+\sqrt{a}\)

10 tháng 10 2018

Bạn làm đc bài này chưa chỉ mình với

a: \(=6\sqrt{a}+\dfrac{1}{3}\sqrt{a}-3\sqrt{a}+\sqrt{7}=\dfrac{10}{3}\sqrt{a}+\sqrt{7}\)

b: \(=5a\cdot5b\sqrt{ab}+\sqrt{3}\cdot2\sqrt{3}\cdot ab\sqrt{ab}+9ab\cdot3\sqrt{ab}-5b\cdot9a\sqrt{ab}\)

\(=25ab\sqrt{ab}+12ab\sqrt{ab}+27ab\sqrt{ab}-45ab\sqrt{ab}\)

\(=19ab\sqrt{ab}\)

c: \(=\dfrac{\sqrt{ab}}{b}+\sqrt{ab}-\dfrac{a}{b}\cdot\dfrac{\sqrt{b}}{\sqrt{a}}\)

\(=\sqrt{ab}\left(\dfrac{1}{b}+1\right)-\dfrac{\sqrt{a}}{\sqrt{b}}\)

\(=\sqrt{ab}\)

d: \(=11\sqrt{5a}-5\sqrt{5a}+2\sqrt{5a}-12\sqrt{5a}+9\sqrt{a}\)

\(=-4\sqrt{5a}+9\sqrt{a}\)

29 tháng 7 2018

a) \(\sqrt{4\left(a-3\right)^2}=\sqrt{2^2\left(a-3\right)^2}=2\sqrt{\left(a-3\right)^2}=2.\left|a-3\right|=2\left(a-3\right)=2a-6\) (Vì \(a\ge3\) )

29 tháng 7 2018

b) \(\sqrt{9\left(b-2\right)^2}=\sqrt{3^2\left(b-2\right)^2}=3\sqrt{\left(b-2\right)^2}=3\left|b-2\right|=3\left(2-b\right)\)

                                                         \(=6-3b\) (vì b < 2 )

b) \(\sqrt{27.48\left(1-a\right)^2}=\sqrt{27.3.16.\left(1-a\right)^2}=\sqrt{81.16.\left(1-a\right)^2}\) 

                                         \(=\sqrt{9^2.4^2.\left(1-a\right)^2}=9.4\sqrt{\left(1-a\right)^2}=36.\left|1-a\right|=36\left(1-a\right)=36-36a\) (vì a > 1)

20 tháng 5 2023

A ơi a chụp rõ hơn đc ko a

31 tháng 3 2017

a) ĐS: ; b) ĐS: 26; c) ĐS: 12a

d) - = - 6a + 9 -

= - 6a + 9 - = - 6a + 9 - 6│a│.

Khi a ≥ 0 thì │a│= a.

Do đó - = - 6a + 9 -6a = - 12a + 9.

Khi a < 0 thì │a│= a.

Do đó - = - 6a + 9 + 6a = + 9.

25 tháng 6 2019

1) \(\sqrt{\frac{24}{3}}\cdot\sqrt{\frac{3a}{8}}=\sqrt{\frac{72a}{24}}=\sqrt{3a}\)

2) \(\sqrt{13a}\cdot\sqrt{\frac{52}{a}}=\sqrt{\frac{13a\cdot52}{a}}=\sqrt{676}=26\)

3) \(\sqrt{5a}\cdot\sqrt{45a}-3a=\sqrt{225a^2}-3a=15a-3a=12a\)

4) \(\left(3-a\right)^2-\sqrt{0,2}\cdot\sqrt{180a^2}=a^2-6a+9-\sqrt{36a^2}=a^2-6a+9-6a=a^2-12a+9\)

NV
19 tháng 9 2019

\(A=\sqrt{9.3.3.16\left(1-a^2\right)}=3.3.4.\left|1-a\right|=36\left(a-1\right)\)

\(B=\frac{1}{a-b}a^2.\left|a-b\right|=\frac{a^2\left(a-b\right)}{a-b}=a^2\)

\(C=\sqrt{5.45.a^2}-3a=\sqrt{5^2.3^2.a^2}-3a=15\left|a\right|-3a=15a-3a=12a\)

\(D=\left(3-a\right)^2-\sqrt{\frac{2.180}{10}a^2}=\left(3-a\right)^2-6\left|a\right|\)

12 tháng 9 2020

a) Ta có: \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\)

         \(=5\sqrt{5}-4.3\sqrt{5}+3.2\sqrt{5}-4\sqrt{5}\)

         \(=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}\)

         \(=-5\sqrt{5}\)

         \(\approx-11,18033989\)

12 tháng 9 2020

b, \(5\sqrt{a}-4b\sqrt{25a^2}+5a\sqrt{16ab^2}-2\sqrt{9a}\)

\(=5\sqrt{a}-20ab+5a.4\sqrt{a}b-6\sqrt{a}\)

\(=-\sqrt{a}-20ab+20a\sqrt{a}b\)