K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

\(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\left(đk:a>0,a\ne1\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+2}=\dfrac{1}{\sqrt{a}}.\dfrac{\sqrt{a}-2}{1}=\dfrac{\sqrt{a}-2}{\sqrt{a}}\)

Để A nguyên

\(\Leftrightarrow A=\dfrac{\sqrt{a}-2}{\sqrt{a}}=1-\dfrac{2}{\sqrt{a}}\in Z\)

Do \(\sqrt{a}>0,\sqrt{a}\ne1\)

\(\Leftrightarrow\sqrt{a}\inƯ\left(2\right)=\left\{2\right\}\)

\(\Leftrightarrow a=4\)

31 tháng 7 2021

a) \(C=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\left(a>0.a\ne1\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}+1-\sqrt{a}-2}{\sqrt{a}-1}=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{-1}{\sqrt{a}-1}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\left(1-\sqrt{a}\right)=-\dfrac{1}{\sqrt{a}}\)

b) \(C=\dfrac{1}{4}\Rightarrow-\dfrac{1}{\sqrt{a}}=\dfrac{1}{4}\Rightarrow\sqrt{a}=-4\) (vô lý) \(\Rightarrow\) không có a thỏa đề

 

 

5 tháng 10 2021

Sửa đề: \(C=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(a,C=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\left(a>0;a\ne1;a\ne4\right)\\ C=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\\ b,C\ge\dfrac{1}{6}\Leftrightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}-\dfrac{1}{6}\ge0\Leftrightarrow\dfrac{\sqrt{a}-4}{6\sqrt{a}}\ge0\\ \Leftrightarrow\sqrt{a}-4\ge0\left(6\sqrt{a}>0\right)\\ \Leftrightarrow a\ge16\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:
ĐKXĐ: $x>0$

a. \(P=\frac{x-1}{\sqrt{x}}:\left[\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}+1)}+\frac{1-\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}\right]\)

\(=\frac{x-1}{\sqrt{x}}:\frac{x-1+1-\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}=\frac{x-1}{\sqrt{x}}:\frac{\sqrt{x}(\sqrt{x}-1)}{\sqrt{x}(\sqrt{x}+1)}=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{(\sqrt{x}+1)^2}{\sqrt{x}}\)

b.

\(x=\frac{4}{4+2\sqrt{3}}=(\frac{2}{\sqrt{3}+1})^2\Rightarrow \sqrt{x}=\frac{2}{\sqrt{3}+1}\)

\(P=\frac{(\frac{2}{\sqrt{3}+1}+1)^2}{\frac{2}{\sqrt{3}+1}}=\frac{3+3\sqrt{3}}{2}\)

 

a: Ta có: \(P=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}\)

a: Ta có: \(P=\left(\dfrac{1}{a+\sqrt{a}}+\dfrac{1}{\sqrt{a}+1}\right):\dfrac{\sqrt{a}-1}{a+2\sqrt{a}+1}\)

\(=\dfrac{a+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}-1}\)

\(=\dfrac{\left(a+1\right)\cdot\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\)

17 tháng 7 2021

\(D=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(D=\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{x+2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(D=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(E=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\frac{x-\sqrt{x}}{1-\sqrt{x}}\right)=\left(1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\left(1-\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)

\(E=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

18 tháng 7 2021

ĐK : a >= 0 , a khác 1

\(C=\left[\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right]\div\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{a+\sqrt{a}-\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\times\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\frac{a}{\sqrt{a}+1}\)

22 tháng 12 2021

Đề hơi sai sai ý bạn ơi

22 tháng 12 2021

ủa đúng rồi mà bạn sai chỗ nào vậy ạ

8 tháng 8 2018

a. \(Z=\left(\sqrt{x}-\dfrac{x+2}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-4}{x-1}\right)\)\(\left(x\ge0,x\ne1\right)\)

\(Z=\dfrac{x\sqrt{x}-\sqrt{x}-x\sqrt{x}+x-2\sqrt{x}+2}{x-1}:\dfrac{x-\sqrt{x}+\sqrt{x}-4}{x-1}\)

\(Z=\dfrac{-3\sqrt{x}+x+2}{x-1}:\dfrac{x-4}{x-1}=\dfrac{x-3\sqrt{x}+2}{x-1}.\dfrac{x-1}{x-4}\)

\(Z=\dfrac{x-3\sqrt{x}+2}{x-4}\)

b. \(Z=\dfrac{x-3\sqrt{x}+2}{x-4}< \dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{x-3\sqrt{x}+2}{x-4}-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{2x-6\sqrt{x}+4-x+4}{2x-8}< 0\)

\(\Leftrightarrow\dfrac{x-6\sqrt{x}+8}{2x-8}< 0\)\(\Leftrightarrow\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)}{2\left(x-4\right)}< 0\)

*\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)< 0\\2\left(x-4\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\sqrt{x}-2< 0\&\sqrt{x}-4>0\\\sqrt{x}-2>0\&\sqrt{x}-4< 0\end{matrix}\right.\\2\left(x-4\right)>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 4\&x>16\left(l\right)\\16>x>4\end{matrix}\right.\\x>4\end{matrix}\right.\)

* \(\left\{{}\begin{matrix}\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)>0\\2\left(x-4\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\sqrt{x}-2>0\&\sqrt{x}-4>0\\\sqrt{x}-2< 0\&\sqrt{x}-4< 0\end{matrix}\right.\\2\left(x-4\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>16\\x< 4\end{matrix}\right.\\x< 4\end{matrix}\right.\) \(\Leftrightarrow16>x>4\)

Vậy: \(Z< \dfrac{1}{2}\Leftrightarrow16>x>4\)

8 tháng 8 2018

sory TH2 loại nha bạn, lấy TH1 thôi

8 tháng 9 2017

ĐKXĐ: \(a>0 \) \(a\ne 1\)

=\((\sqrt{a} +\frac{a}{1-\sqrt{a} } )(\frac{\sqrt{a} }{2}-\frac{1}{2} )\)

=\(\frac{\sqrt{a} -a+a}{1-\sqrt{a} }\frac{\sqrt{a}-1 }{2}\)

=\(\frac{-\sqrt{a} }{2} \)

9 tháng 9 2017

\(\left(\dfrac{a+\sqrt{a}}{1+\sqrt{a}}+\dfrac{a}{1-\sqrt{a}}\right).\left(\dfrac{a}{2\sqrt{a}}-\dfrac{1}{2}\right)\)

\(ĐKXĐ:a>0;a\ne1\)

\(=\left(\sqrt{a}+\dfrac{a}{1-\sqrt{a}}\right).\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2}\right)\)

\(=\dfrac{\sqrt{a}-a+a}{1-\sqrt{a}}.\dfrac{\sqrt{a}-1}{2}\)

\(=\dfrac{-\sqrt{a}}{2}\)