\(\frac{5^2-1}{3^2-1}:\frac{9^2-1}{7^2-1}:\frac{13^2-1}{11^2-1}:......:\frac{55^2-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

\(A=\frac{3^2-1}{5^2-1}:\frac{9^2-1}{7^2-1}:\frac{13^2-1}{11^2-1}:...:\frac{55^2-1}{53^2-1}\)

    \(=\frac{\left(3-1\right)\left(3+1\right)}{\left(5-1\right)\left(5+1\right)}:\frac{\left(9-1\right)\left(9+1\right)}{\left(7-1\right)\left(7+1\right)}:\frac{\left(13-1\right)\left(13+1\right)}{\left(11-1\right)\left(11+1\right)}:...:\frac{\left(55-1\right)\left(55+1\right)}{\left(53-1\right)\left(53+1\right)}\)

    \(=\frac{2.4}{4.6}:\frac{8.10}{6.8}:\frac{12.14}{10.12}:...:\frac{54.56}{52.54}\)

    \(=\frac{2.4.6.8.10.12......52.54}{4.6.8.10.12.....54.56}\)

    \(=\frac{2}{56}\)

   \(=\frac{1}{28}\)

21 tháng 3 2020

1)\(4\left(a^4-1\right)x=5\left(a-1\right)\)

<=>x=\(\frac{5\left(a-1\right)}{a^4-1}\)

<=>x=\(\frac{5\left(a-1\right)}{\left(a-1\right)\left(a+1\right)\left(a^2+1\right)}=\frac{5}{\left(a+1\right)\left(a^2+1\right)}\)

Tương tự ta tính được y=\(\frac{4a^6+4}{5a^4-5a^2+5}\)

Suy ra x.y=\(\frac{5}{\left(a+1\right)\left(a^2+1\right)}.\frac{4\cdot\left(a^6+1\right)}{5\left(a^4-a^2+1\right)}\)=\(\frac{5}{\left(a+1\right)\left(a^2+1\right)}.\frac{4\left(a^2+1\right)\left(a^4-a^2+1\right)}{5\left(a^4-a^2+1\right)}\)

=\(\frac{5}{a+1}\)

Tương tự với x:y

21 tháng 3 2020

\(A=\frac{4.6}{4.2}:\left(\frac{8.10}{6.8}.\frac{12.14}{10.12}.\frac{16.18}{14.16}...\frac{54.56}{54.53}\right)=\frac{6}{2}:\frac{56}{6}=\)

Câu 6. Giải các phương trình sau: a, x+\(\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\); b, \(\frac{3x-1-\frac{x-1}{2}}{3}-\frac{2x+\frac{1-2x}{3}}{2}=\frac{\frac{3x-1}{2}}{5}-6\) Câu 7. Giải các phương trình sau: a, \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\); b, \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4+++==}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\) c,...
Đọc tiếp

Câu 6. Giải các phương trình sau:

a, x+\(\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\); b, \(\frac{3x-1-\frac{x-1}{2}}{3}-\frac{2x+\frac{1-2x}{3}}{2}=\frac{\frac{3x-1}{2}}{5}-6\)

Câu 7. Giải các phương trình sau:

a, \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\); b, \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4+++==}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\)

c, \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\); d, \(\frac{201-6}{99}+\frac{203-6}{97}=\frac{205-x}{95}+3=0\)

e, \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\); f, \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)

g, \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\); h, \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)

i, \(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1973}=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}\);

1
29 tháng 3 2020

Câu 6 :

a, Ta có : \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)

=> \(\frac{15x}{15}+\frac{5\left(2x+\frac{x-1}{5}\right)}{15}=\frac{15}{15}-\frac{3\left(3x-\frac{1-2x}{3}\right)}{15}\)

=> \(15x+5\left(2x+\frac{x-1}{5}\right)=15-3\left(3x-\frac{1-2x}{3}\right)\)

=> \(15x+10x+\frac{5\left(x-1\right)}{5}=15-9x+\frac{3\left(1-2x\right)}{3}\)

=> \(15x+10x+x-1=15-9x+1-2x\)

=> \(15x+10x+x-1-15+9x-1+2x=0\)

=> \(37x-17=0\)

=> \(x=\frac{17}{37}\)

Vậy phương trình trên có nghiệm là \(S=\left\{\frac{17}{37}\right\}\)

Bài 7 :

a, Ta có : \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)

=> \(\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)

=> \(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)

=> \(x-23=0\)

=> \(x=23\)

Vậy phương trình trên có nghiệm là \(S=\left\{23\right\}\)

c, Ta có : \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

=> \(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)

=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\)

=> \(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

=> \(x+2005=0\)

=> \(x=-2005\)

Vậy phương trình trên có nghiệm là \(S=\left\{-2005\right\}\)

e, Ta có : \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)

=> \(\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)

=> \(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)

=> \(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)

=> \(\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)

=> \(x-100=0\)

Vậy phương trình trên có nghiệm là \(S=\left\{100\right\}\)

20 tháng 1 2019

\(VP=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\)

\(=1-1+\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4023}{2011}-1\right)+\left(\frac{40024}{2012}-1\right)+2012\)

\(=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}+\frac{2012}{1}\)

\(=2012.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

\(\Rightarrow2012=503.x\Rightarrow x=\frac{2012}{503}=4\)

4 tháng 2 2020

a/ \(7x-5=13-5x\)

\(\Leftrightarrow7x+5x=13+5\)

\(\Leftrightarrow12x=18\)

\(\Leftrightarrow x=\frac{3}{2}\)

b/\(5\left(2x-3\right)-4\left(5x-7\right)=19-2\left(x+11\right)\)

\(\Leftrightarrow10x-15-20x+28=19-2x-22\)

\(\Leftrightarrow10x-20x+2x=19-22-28+15\)

\(\Leftrightarrow-8x=-16\)

\(\Leftrightarrow x=2\)

c/ \(\frac{2x-1}{3}-\frac{5x+2}{7}=x+13\)

\(\Leftrightarrow\frac{7\left(2x-1\right)-3\left(5x+2\right)-21\left(x+13\right)}{21}=0\)

\(\Leftrightarrow14x-7-15x-6-21x-273=0\)

\(\Leftrightarrow-22x-286=0\)

\(\Leftrightarrow x=-13\)

e/ \(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{2}{x+1}-\frac{1}{x-2}-\frac{3x-11}{\left(x+1\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{2\left(x-2\right)\left(x+2\right)-\left(x+1\right)\left(x+2\right)-\left(3x-11\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{2\left(x^2-4\right)-\left(x^2+3x+2\right)-\left(3x^2-17x+22\right)}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow2x^2-8-x^2-3x-2-3x^2+17x-22=0\)

\(\Leftrightarrow-2x^2+14x-32=0\)

\(\Leftrightarrow x^2-7x+16=0\)

\(\Leftrightarrow x=\frac{-\left(-7\right)\pm\sqrt{\left(-7\right)^2-4.1.16}}{2}\)

\(\Leftrightarrow x=\frac{7\pm\sqrt{-15}}{2}\left(ktm\right)\)

\(\Leftrightarrow x\in\varnothing\)

4 tháng 2 2020

Bài 1:

a) \(7x-5=13-5x\)

\(\Leftrightarrow7x+5x=13+5\)

\(\Leftrightarrow12x=18\)

\(\Leftrightarrow x=18:12\)

\(\Leftrightarrow x=\frac{3}{2}.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{\frac{3}{2}\right\}.\)

b) \(5.\left(2x-3\right)-4.\left(5x-7\right)=19-2.\left(x+11\right)\)

\(\Leftrightarrow10x-15-\left(20x-28\right)=19-\left(2x+22\right)\)

\(\Leftrightarrow10x-15-20x+28=19-2x-22\)

\(\Leftrightarrow13-10x=-3-2x\)

\(\Leftrightarrow13+3=-2x+10x\)

\(\Leftrightarrow16=8x\)

\(\Leftrightarrow x=16:8\)

\(\Leftrightarrow x=2.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2\right\}.\)

c) \(\frac{2x-1}{3}-\frac{5x+2}{7}=x+13\)

\(\Leftrightarrow\frac{7.\left(2x-1\right)}{7.3}-\frac{3.\left(5x+2\right)}{3.7}=\frac{21.\left(x+13\right)}{21}\)

\(\Leftrightarrow\frac{14x-7}{21}-\frac{15x+6}{21}=\frac{21x+273}{21}\)

\(\Leftrightarrow14x-7-\left(15x+6\right)=21x+273\)

\(\Leftrightarrow14x-7-15x-6=21x+273\)

\(\Leftrightarrow-x-13=21x+273\)

\(\Leftrightarrow-x-21x=273+13\)

\(\Leftrightarrow-22x=286\)

\(\Leftrightarrow x=286:\left(-22\right)\)

\(\Leftrightarrow x=-13.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-13\right\}.\)

Chúc bạn học tốt!

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0 1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\) e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\) g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h,...
Đọc tiếp

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0

1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)

g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)

i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)

p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)

r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)

t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)

v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)

17

Đây là những bài cơ bản mà bạn!

29 tháng 3 2020

bạn ấy muốn thách xem bạn nào đủ kiên nhẫn đánh hết chỗ này

5 tháng 3 2017

a.2x#+_2 . quy đồng khử mẫu tchung : (x+2)(x+1)+(x-1)(x-2)--->2x^2 + 4=2(x^2+2). --> s={x thuộc R/ X#+_2}

23 tháng 4 2017

 a) ĐKXĐ \(\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)

 \(\Rightarrow\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)-2x\left(x^2+2\right)=0\)

 \(\Leftrightarrow x^2+3x+2+x^2-3x+2-2x^2-4=0\)

 \(\Leftrightarrow0x=0\)(vô số nghiệm)

nghiệm x thỏa mãn phương trình S \(\in\)R  với   \(\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)

 b) ĐKXĐ  \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

\(\Rightarrow\frac{5-x}{4x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}=\frac{1}{2x\left(x-2\right)}-\frac{7}{8x}\) 

 \(\Rightarrow2\left(5-x\right)-x-4\left(x-1\right)+7\left(x-2\right)=0\)

\(\Leftrightarrow10-2x-x-4x+4+7x-14=0\) 

 \(\Leftrightarrow0x=0\)(phương trìh vô số nghiệm)

nghiệm x thỏa mãn phương trình S \(\in\)R  với   \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)