K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2018

đi rồi bày cho

4 tháng 7 2018

Ta có

\(A=3x^4+11x^3-7x^2-2x+1\)có tận cùng là 1

\(1=1\cdot1=-1\cdot\left(-1\right)\)

\(\Rightarrow3x^4+11x^3-7x^2-2x+1=\left(ax+1\right)\left(bx^3+cx^2+dx+1\right)\)

Vì \(3=1\cdot3=\left(-1\right)\cdot\left(-3\right)\)

=> Ta thấy A=1 hoặc A=-1 là không thể

=> A=-3 hoặc A=3

Đặt phép tính cho từng trường hợp ta được

\(3x^4+11x^3-7x^2-2x+1=\left(-3x+1\right)\left(-x^3-4x^2+x+1\right)\)

31 tháng 10 2015

Vì tận cùng là 1 (1=1.1 hoặc -1.-1)

=> 3x4+3x3-7x2-2x+1 = (ax +1)(bx3+cx2+dx+1) (1=-1.-1 thì đặt dấu trừ ra ngoài sẽ mất dấu)

Vì 3=1.3 hoặc -1.-3

=> ta thấy a=1 hoặc -1 là không thế (nhìn vào là biết thôi)

=> a=-3 hoặc 3 

Đặt phép tính chia cho từng trường hợp ta được 3x4+11x3-7x2-2x+1= (-3x+1)(-x3-4x2+x+1)

Đây là cách suy luận của mình khi làm bài trên còn ghi vào giấy thì đừng làm vậy nhé

Chỉ cần ghi : 3x4+11x3-7x2-2x+1 = 3x4 -x3 +12x3 .... v.v => đặt nhân tử chung

4 tháng 9 2018

đi rồi bày cho

4 tháng 9 2018

\(C=x^4-x^3+2x^2-11x-5\)

   \(=x^4+x^3+5x^2-2x^3-2x^2-10x-x^2-x-5\)

   \(=x^2\left(x^2+x+5\right)-2x\left(x^2+x+5\right)-\left(x^2+x+5\right)\)

   \(=\left(x^2+x+5\right)\left(x^2-2x-1\right)\)

Bài này phải dùng phương pháp hệ số bất định (bài này khó)

C có dạng \(\left(x^2+ax+b\right)\left(x^2+cx+d\right)=x^4+\left(a+c\right)x^3+\left(ac+b+d\right)x^2+\left(ad+bc\right)x+bd\)

Đồng nhất với đa thức C thì phải giải 4 cái sau:

\(a+c=-1\left(1\right),ac+b+d=2\left(2\right),ad+bc=-11\left(3\right),bd=-5\left(4\right)\)

Giải (4) trước (vì \(b,d\in Z\)

Rồi thay vào thử tìm a,c (hơi lâu vì bài này trong 4 ước chỉ tìm được duy nhất 1 giá trị của b và d)

Lời giải thích trên hơi khó hiểu đúng ko? Chúc bạn học tốt.

7 tháng 8 2023

  Đặt \(P\left(x\right)=\left(x-a\right)\left(x+a\right)+5=x^2-a^2+5\). Để P(x) phân tích được thành tích các đa thức bậc nhất có hệ số nguyên thì \(P\left(x\right)=\left(x-c\right)\left(x-d\right)\) (vì hệ số cao nhất của P(x) bằng 1). Ta có:

 \(P\left(x\right)=x^2-\left(c+d\right)x+cd\)

 Đồng nhất hệ số, ta thu được \(\left\{{}\begin{matrix}c+d=0\\cd=5-a^2\end{matrix}\right.\). Không mất tính tổng quát, giả sử \(c>0\) \(\Rightarrow\left\{{}\begin{matrix}d=-c\\-c^2=5-a^2\end{matrix}\right.\)

 \(\Rightarrow a^2-c^2=5\) \(\Leftrightarrow\left(a-c\right)\left(a+c\right)=5\). Do \(a-c< a+c\) nên ta xét các trường hợp: 

 TH1: \(\left\{{}\begin{matrix}a-c=1\\a+c=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\c=2\end{matrix}\right.\) \(\Rightarrow d=-2\). Thử lại, ta thấy thỏa mãn. 

 TH2: \(\left\{{}\begin{matrix}a-c=-5\\a+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\c=2\end{matrix}\right.\)\(\Rightarrow d=-2\). Thử lại, ta thấy thỏa mãn.

 Vậy \(a=\pm3\) thỏa ycbt.

 b) Kĩ thuật tương tự nhé.

 Để Q(x) phân tích được thành tích của 2 đa thức bậc nhất hệ số nguyên thì 

7 tháng 8 2023

a) Đối với đa thức (x+a)(x-a)+5:
Để phân tích thành tích các đa thức bậc nhất có hệ số nguyên, ta cần giải phương trình (x + a)(x - a) + 5 = 0:
x² - a² + 5 = 0.

Các giá trị của a mà khi thay vào phương trình trên, phương trình có nghiệm nguyên là các giá trị riêng. Nhưng phương trình x² - a² + 5 = 0 là một phương trình bậc hai, do đó ta có thể sử dụng công thức giải nghiệm của phương trình bậc hai:

x = [-b ± √(b² - 4ac)] / (2a)

Ở đây, a = 1, b = 0 và c = -a² + 5.
Thay vào phương trình, ta có:

x = [0 ± √(0 - 4(1)(-a² + 5)) / (2(1)]
= [± √(4a² - 20)] / 2
= ± √(a² - 5) / 2.

Để phương trình có nghiệm nguyên, a² - 5 phải là bình phương của một số nguyên. Ta có thể tìm các giá trị nguyên của a bằng cách xét từng giá trị nguyên cho a và kiểm tra xem a² - 5 có phải là bình phương của một số nguyên hay không.
Ví dụ, nếu a = 1, ta có:

a² - 5 = 1² - 5 = -4,

-4 không phải là bình phương của một số nguyên, vì vậy a = 1 không phải là giá trị riêng của đa thức.

Tiếp tục quá trình trên với các giá trị nguyên khác của a, ta sẽ tìm được giá trị của a mà khi thay vào phương trình (x + a)(x - a) + 5 = 0, phương trình có nghiệm nguyên là giá trị riêng.

b) Đối với đa thức (a - x)(5 - x) - 3:
Phân tích thành tích các đa thức bậc nhất có hệ số nguyên của đa thức này cũng tương tự như trên. Ta giải phương trình (a - x)(5 - x) - 3 = 0:

(a - x)(5 - x) - 3 = 0.

Tương tự như trên, ta có thể sử dụng công thức giải nghiệm của phương trình bậc hai:

x = [-b ± √(b² - 4ac)] / (2a).

Ở đây, a = 1, b = 6 - a và c = -3.
Thay vào phương trình, ta có:

x = [(a - 6) ± √((6 - a)² - 4(-3)(1))] / (2)

Sau đó, ta tìm các giá trị của a mà làm cho phương trình có nghiệm nguyên.