K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a) \(5x-15y=5\left(x-3y\right)\)

b) \(\dfrac{3}{5}x^2+5x^4-x^2y=x^2\left(\dfrac{3}{5}+5x^2-y\right)\)

c) \(14x^2y^2-21xy^2+28x^2y=7xy\left(2xy-3y+4x\right)\)

d) \(\dfrac{2}{7}x\left(3y-1\right)-\dfrac{2}{7}y\left(3y-1\right)=\dfrac{2}{7}\left(3y-1\right)\left(x-y\right)\)

e) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)

f) \(\left(x+y\right)^2-4x^2=\left(-x+y\right)\left(3x+y\right)\)

g) \(27x^3+\dfrac{1}{8}=\left(3x+\dfrac{1}{2}\right)\left(6x^2+1,5x+\dfrac{1}{4}\right)\)

h) \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)

\(=6x^2y+2y^3=2y\left(3x^2+y\right)\)

Bài 2:

a) \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)

\(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\Rightarrow x=-1\\x+2=0\Rightarrow x=-2\end{matrix}\right.\)

b) \(x\left(3x-2\right)-5\left(2-3x\right)=0\)

\(\Rightarrow x\left(3x-2\right)+5\left(3x-2\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x-2=0\Rightarrow x=\dfrac{2}{3}\\x+5=0\Rightarrow x=-5\end{matrix}\right.\)

c) \(\dfrac{4}{9}-25x^2=0\)

\(\Rightarrow\left(\dfrac{2}{3}-5x\right)\left(\dfrac{2}{3}+5x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}-5x=0\Rightarrow x=\dfrac{2}{15}\\\dfrac{2}{3}+5x=0\Rightarrow x=\dfrac{-2}{15}\end{matrix}\right.\)

d) Có tới 2 dấu "=".

28 tháng 9 2017

bài 1 dễ mk ko lm nữa nhé

bafi2:

a,x(x+1)(x+2)=0

x=0 ; x=-1 ; x=-2

b,x(3x-2)+5(3x-2)=0

(x+5)(3x-2)=0

x=-5 ; x=2/3

c,

(2/3)2- (5x)2=0

(2/3-5x)(2/3+5x)=0

x=+-2/15

d, X2-2*1/2x+(1/2)2=0

(X-1/2)22=0

X=1/2

6 tháng 10 2019

Mình giải mẫu pt đầu thôi nhé, những pt sau ttự.

1,\(x^4-\frac{1}{2}x^3-x^2-\frac{1}{2}x+1=0\)

Ta thấy x=0 ko là nghiệm.

Chia cả 2 vế cho x2 >0:

pt\(\Leftrightarrow x^2-\frac{1}{2}x-1-\frac{1}{2x}+\frac{1}{x^2}=0\)

Đặt \(t=x-\frac{1}{x}\left(t\in R\right)\)

\(\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)

pt\(\Leftrightarrow t^2-\frac{1}{2}t+1=0\)(vô n0)

Vậy pt vô n0.

#Walker

10 tháng 12 2017

a) \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)

b) \(x^2-2x-15=\left(x^2-2x+1\right)-16=\left(x-1\right)^2-4^2=\left(x-1-4\right)\left(x-1+4\right)=\left(x-5\right)\left(x+3\right)\)

c) \(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)

d) \(12x^2y-18xy^2-30y^2=6\left(2x^2y-3xy^2-5y^2\right)\)

e, ntc: x-y

f, đối dấu --> ntc

g, như ý f

h, \(36-12x+x^2=\left(6-x\right)^2=\left(x-6\right)^2\)

i, \(3x^3y^2-6x^2y^3+9x^2y^2=3x^2y^2\left(x-y+3\right)\)

10 tháng 12 2017

thanks

19 tháng 7 2017

Tìm x biết:

b/\(\left(2x+3\right)^2-\left(5x-4\right)\left(5x+4\right)=\left(x+5\right)^2-\left(3x-1\right)\left(7x+2\right)-\left(x^2-x+1\right)\)

<=> \(4x^2 +12x+9-25x^2+16-x^2-10x-25+21x^2+6x-7x-2+x^2-x+1=0\)

<=>0x-1=0

<=>0x=1 (vô lí) (dòng này không cần ghi thêm cũng được)

=> Không có giá trị x nào thỏa mãn

c/ \((1-3x)^2-(x-2)(9x+1)=(3x-4)(3x+4)-9(x+3)^2\)

<=>\(1-6x+9x^2-9x^2-x+18x+2-9x^2+16+9x^2+54x+81=0\)

<=> 65x+100=0

<=> x=\(\dfrac{-20}{13}\)

d/\((3x+4)(3x-4)-(2x+5)^2=(x-5)^2+(2x+1)^2-(x^2-2x)+(x-1)^2\)

<=> \(9x^2-16-4x^2-20x-25-x^2+10x-25-4x^2-4x-1+x^2+2x-x^2+2x-1=0\)

<=> -10x-68=0

<=> x=\(\dfrac{-34}{5}\)

15 tháng 8 2016

a) x3 +x+2

=\(\left(x^3+x^2\right)-\left(x^2+x\right)+\left(2x+2\right)\)

=\(\left(x+1\right)\left(x^2-x+2\right)\)

b) x3-2x-1

=\(\left(x^3+x^2\right)-\left(x^2+x\right)-\left(x+1\right)\)

=\(\left(x+1\right)\left(x^2-x-1\right)\)

c) x3+3x2-4

=\(\left(x^3-x^2\right)+\left(4x^2+4x\right)-\left(4x+4\right)\)

=\(\left(x-1\right)\cdot\left(x^2+4x-4\right)\)

d) x3+3x2y-9xy2+5y3

=\(\left(x^3-x^2y\right)+\left(4x^2y-4xy^2\right)-\left(5xy^2-5y^3\right)\)

=\(\left(x-y\right)\left(x^2+4xy-5y^2\right)\)

=\(\left(x-y\right)^2\left(x-5y\right)\)

15 tháng 8 2016

a)

\(x^3+x+2\)

\(=\left(x^3+x^2\right)-\left(x^2+x\right)+\left(2x+2\right)\)

\(=x^2\left(x+1\right)-x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+2\right)\)

b)

\(x^3-2x-1\)

\(=\left(x^3+x^2\right)-\left(x^2+x\right)-\left(x+1\right)\)

\(=x^2\left(x+1\right)-x\left(x+1\right)-\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x-1\right)\)

c)

\(x^3-3x^2-4\)

\(=\left(x^3-x^2\right)+\left(4x^2-4x\right)+\left(4x-4\right)\)

\(=x^2\left(x-1\right)+4x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+2.2.x+2^2\right)\)

\(=\left(x-1\right)\left(x+2\right)^2\)

d)

\(x^3-3x^2y-9xy^2+5y^3\)

\(=\left(x^3-x^2y\right)+\left(4x^2y-4xy^2\right)-\left(5xy^2-5y^3\right)\)

\(=x^2\left(x-y\right)+4xy\left(x-y\right)-5y^2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-4xy-5y^2\right)\)

\(=\left(x-y\right)^2\left(x-5y\right)\)

NV
13 tháng 3 2020

a/ - Với \(x>\frac{1}{4}\) PT vô nghiêm

- Với \(x\le\frac{1}{4}\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(1-4x\right)^2\)

\(\Leftrightarrow\left(x^2+4x-2\right)\left(x^2-4x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+4x-2=0\\x^2-4x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\left(l\right)\\x=-2-\sqrt{6}\\x=4\left(l\right)\\x=0\end{matrix}\right.\)

2.

- Với \(x\ge-\frac{1}{4}\Leftrightarrow4x+1=x^2+2x-4\)

\(\Leftrightarrow x^2-2x-5=0\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{6}\\x=1-\sqrt{6}\left(l\right)\end{matrix}\right.\)

- Với \(x< -\frac{1}{4}\)

\(\Leftrightarrow-4x-1=x^2+2x-4\)

\(\Leftrightarrow x^2+6x-3=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-3+2\sqrt{3}\left(l\right)\\x=-3-2\sqrt{3}\end{matrix}\right.\)

NV
13 tháng 3 2020

3.

- Với \(x\ge\frac{5}{3}\)

\(\Leftrightarrow3x-5=2x^2+x-3\)

\(\Leftrightarrow2x^2-2x+2=0\left(vn\right)\)

- Với \(x< \frac{5}{3}\)

\(\Leftrightarrow5-3x=2x^2+x-3\)

\(\Leftrightarrow2x^2+4x-8=0\Rightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)

4. Do hai vế của pt đều không âm, bình phương 2 vế:

\(\Leftrightarrow\left(x^2-2x+8\right)^2=\left(x^2-1\right)^2\)

\(\Leftrightarrow\left(x^2-2x+8\right)^2-\left(x^2-1\right)^2=0\)

\(\Leftrightarrow\left(2x^2-2x+7\right)\left(-2x+9\right)=0\)

\(\Leftrightarrow-2x+9=0\Rightarrow x=\frac{9}{2}\)

4 tháng 8 2019

Bài 1

d, \(x^2+2xy+y^2-2x-2y+1\)

\(\Rightarrow x^2+y^2=1+2xy-2y-2x\)

\(\Rightarrow\left(x+y-1\right)^2\)

Bài 2:

a, \(\left(x+1\right)\left(x+1\right)=\left(x+2\right)\left(x+5\right)\)

\(\Leftrightarrow\left(x+1\right)^2=x^2+5x+2x+10\)

\(\Leftrightarrow x^2+2x+1=x^2=5x+2x+10\)

\(\Leftrightarrow-5x=9\)

\(\Leftrightarrow x=-\frac{9}{5}\)

b,\(\left(x+3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)

c, \(4x^2-9=0\)

\(\Leftrightarrow4x^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\\frac{3}{2}\end{matrix}\right.\)

d,\(\left(4x-5\right)^2-\left(3x-4\right)^2=0\)

\(\Leftrightarrow16x^2-40x+25-\left(9x^2-24x+16\right)=0\)

\(\Leftrightarrow16x^2-40x+25-9x^2+24x-16=0\)

\(\Leftrightarrow7x^2-16x+9=0\)

\(\Leftrightarrow x=\frac{-\left(-16\right)\pm\sqrt{\left(-16\right)^2-4.7.9}}{14}\)

\(\Leftrightarrow x=\frac{16\pm\sqrt{256-252}}{14}\)

\(\Leftrightarrow x=\frac{16\pm\sqrt{4}}{14}\)

\(\Leftrightarrow x=\frac{16\pm2}{14}\)

\(\Leftrightarrow x=\left[{}\begin{matrix}\frac{16+2}{14}\\\frac{16-2}{14}\end{matrix}\right.\)

\(\Leftrightarrow x=\left[{}\begin{matrix}\frac{9}{7}\\1\end{matrix}\right.\)

4 tháng 8 2019

1.a)\(3x-3y+x^2-2xy+y^2\)

\(=3\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3+x-y\right)\)

d)\(x^2+2xy+y^2-2x-2y+1\)

\(=\left(x+y\right)^2-2\left(x+y\right)+1\)

\(=\left(x+y+1\right)^2\)

2.a)\(\left(x+1\right)\left(x+1\right)=\left(x+2\right)\left(x+5\right)\)

\(\Leftrightarrow\left(x+1\right)^2=x^2+5x+2x+10\)

\(\Leftrightarrow x^2+2x+1-x^2-7x-10=0\)

\(\Leftrightarrow-5x-9=0\)

\(\Leftrightarrow-5x=9\)

\(\Leftrightarrow x=-\frac{9}{5}\). Vậy \(S=\left\{-\frac{9}{5}\right\}\)

b)\(\left(x+3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\).Vậy \(S=\left\{-3;-5\right\}\)

c)\(4x^2-9=0\)

\(\Leftrightarrow\left(2x+3\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{3}{2}\end{matrix}\right.\). Vậy \(S=\left\{\pm\frac{3}{2}\right\}\)

d)\(\left(4x-5\right)^2-\left(3x-4\right)^2=0\)

\(\Leftrightarrow\left(4x-5+3x-4\right)\left(4x-5-3x+4\right)=0\)

\(\Leftrightarrow\left(7x-9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7x-9=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{9}{7}\\x=1\end{matrix}\right.\). Vậy \(S=\left\{1;\frac{9}{7}\right\}\)

3.Ta có:

8x^2-26x+m 2x-3 4x-7 -14x+m m+21

Để \(A\left(x\right)⋮B\left(x\right)\) thì: \(m+21⋮2x-3\)

\(\Rightarrow m+21=0\)

\(\Rightarrow m=-21\)

Vậy...!

21 tháng 9 2019

Quy tắc xét tính chẵn lẻ của hàm số:

Chẵn \(\Leftrightarrow\left\{{}\begin{matrix}x\in D\Rightarrow-x\in D\\f\left(x\right)=f\left(-x\right)\end{matrix}\right.\)

Lẻ \(\Leftrightarrow\left\{{}\begin{matrix}x\in D\Rightarrow-x\in D\\f\left(x\right)=-f\left(-x\right)\end{matrix}\right.\)

a/ \(g=2x^4-x^2+5\)

\(x\in D=R\Rightarrow-x\in D\)

\(g\left(-x\right)=2\left(-x\right)^4-\left(-x\right)^2+5=2x^4-x^2+5=g\left(x\right)\)

=> hàm số chẵn

b/ \(y=x^3+3x\)

\(x\in D=R\Rightarrow-x\in D\)

\(y\left(-x\right)=\left(-x\right)^3+3\left(-x\right)=-x^3-3x=-\left(x^3+3x\right)\)

\(\Rightarrow y\left(x\right)=-y\left(-x\right)\)

=> hàm số lẻ

c/ \(y=x^3+3x+1\)

\(x\in D=R\Rightarrow-x\in D\)

\(y\left(-x\right)=\left(-x\right)^3+3\left(-x\right)+1=-x^3-3x+1\)

\(\Rightarrow\left\{{}\begin{matrix}y\left(x\right)\ne y\left(-x\right)\\y\left(x\right)\ne-y\left(-x\right)\end{matrix}\right.\)

=> hàm số ko chẵn ko lẻ

d/ \(y=x^4-3\)

\(x\in D=R\Rightarrow-x\in D\)

\(y\left(-x\right)=\left(-x\right)^4-3=x^4-3=y\left(x\right)\)

=> hàm số chẵn

e/ \(y=3x^4-\left|x\right|+2\)

\(x\in D=R\Rightarrow-x\in D\)

\(y\left(-x\right)=3\left(-x\right)^4-\left|-x\right|+2=3x^4-\left|x\right|+2=y\left(x\right)\)

=> hàm số chẵn

f/ \(x\in D=R\Rightarrow-x\in D\)

\(y\left(-x\right)=\left|-x-1\right|+\left|-x+1\right|=\left|x+1\right|+ \left|x-1\right|=y\left(x\right)\)

=> hàm số chẵn

Các câu sau làm tương tự

NV
21 tháng 9 2019

a/ \(g\left(-x\right)=2\left(-x\right)^4-\left(-x\right)^2+5=2x^4-x^2+5=g\left(x\right)\)

Hàm chẵn

b/ \(y\left(-x\right)=\left(-x\right)^3+3\left(-x\right)=-x^3-3x=-\left(x^3+3x\right)=-y\left(x\right)\)

Hàm lẻ

c/ \(y\left(-x\right)=-x^3-3x+1\)

Hàm ko chẵn ko lẻ

d/ \(y\left(-x\right)=x^4-3=y\left(x\right)\) hàm chẵn

e/ \(y\left(-x\right)=3x^4-\left|x\right|+2=y\left(x\right)\) hàm chẵn

f/ \(y\left(-x\right)=\left|-x-1\right|+\left|-x+1\right|=\left|x+1\right|+\left|x-1\right|=y\left(x\right)\)

Hàm chẵn

g/ \(y\left(-x\right)=\left|-x-1\right|-\left|-x+1\right|=\left|x+1\right|-\left|x-1\right|=-y\left(x\right)\)

Hàm lẻ

h/ Hàm ko chẵn ko lẻ