Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi quãng đường AB là x(x>0)
Thời gian dự định của ô tô là : \(\dfrac{x}{60}\)(giờ)
Vì khi khời hành xe đi được nửa giờ với vận tốc dự định nên xe đi được quãng đường là:60.\(\dfrac{1}{2}\)=30(km)
Vận tốc xe đi trên quãng đường xấu là: 60-10=50(km)
quãng đường xấu dài là :x-30(km)
Thời gian xe đi trên quãng đường xấu là:\(\dfrac{x-30}{50}\)
Đổi 20 phút =\(\dfrac{1}{3}\) giờ
Theo đề ta có phương trình: \(\dfrac{1}{2}\)+\(\dfrac{x-30}{50}\)=\(\dfrac{x}{60}\)+\(\dfrac{1}{3}\)
⇔\(\dfrac{x}{60}\)-\(\dfrac{x-30}{50}\)=\(\dfrac{1}{3}\)-\(\dfrac{1}{2}\)
⇔60x-10800=-3000
⇔60x=7800
⇔x=130(TM)
Vậy quãng đường AB dài 130 km
Gọi vận tốc ô tô dự định đi từ A đến B là \(x\) (km/h). ĐK: \(x>5\)
Gọi thời gian ô tô dự định đi từ A đến B là \(y\) (h). ĐK: \(y>0\)
Suy ra độ dài quãng đường AB là Vận tốc x thời gian = \(xy\) (km)
Đổi: \(30ph=\frac{1}{2}h;20ph=\frac{1}{3}h\)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x+10\) (km/h)
Khi đó ô tô đến B sớm hơn 30 phút so với dự định nên thời gian ô tô đi đến B là \(y-\frac{1}{2}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x+10\right).\left(y-\frac{1}{2}\right)\)(km)
Ta có phương trình: \(xy=\left(x+10\right).\left(y-\frac{1}{2}\right)\)(1)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x-5\) (km/h)
Khi đó ô tô đến B muộn 20 phút so với dự định nê thời gian ô tô đi đến B là \(y+\frac{1}{3}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x-5\right).\left(y+\frac{1}{3}\right)\)(km)
Ta có phương trình: \(xy=\left(x-5\right).\left(y+\frac{1}{3}\right)\)(2)
Từ (1) và (2) ta có hệ phương trình: \( \begin{cases} xy= (x+10).(y- {\frac{1}{2}}) & \quad \\ xy= (x-5).(y+ {\frac{1}{3}}) & \quad \\ \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} x= 50 & \quad \\ y= 3 & \quad \\ \end{cases}\)(tmđk)
Vận tốc ô tô dự định đi từ A đến B là 50 km/h
Thời gian ô tô dự định đi từ A đến B là 3 h
Suy ra độ dài quãng đường AB: \(xy=50.3=150\)(km)
Vậy độ dài quãng đường AB là 150 km.
(Hệ phương trình thì bạn tự giải nhé)
Gọi vận tốc ô tô dự định đi từ A đến B là \(x\) (km/h). ĐK: \(x>5\)
Gọi thời gian ô tô dự định đi từ A đến B là \(y\) (h). ĐK: \(y>0\)
Suy ra độ dài quãng đường AB là Vận tốc x thời gian = \(xy\) (km)
Đổi: \(30ph=\frac{1}{2}h;20ph=\frac{1}{3}h\)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x+10\) (km/h)
Khi đó ô tô đến B sớm hơn 30 phút so với dự định nên thời gian ô tô đi đến B là \(y-\frac{1}{2}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x+10\right).\left(y-\frac{1}{2}\right)\)(km)
Ta có phương trình: \(xy=\left(x+10\right).\left(y-\frac{1}{2}\right)\)(1)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x-5\) (km/h)
Khi đó ô tô đến B B muộn 20 phút so với dự định nê thời gian ô tô đi đến B là \(y+\frac{1}{3}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x-5\right).\left(y+\frac{1}{3}\right)\)(km)
Ta có phương trình: \(xy=\left(x-5\right).\left(y+\frac{1}{3}\right)\)(2)
Từ (1) và (2) ta có hệ phương trình: \( \begin{cases} xy= (x+10).(y- {\frac{1}{2}}) & \quad \\ xy= (x-5).(y+ {\frac{1}{3}}) & \quad \\ \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} x= 50 & \quad \\ y= 3 & \quad \\ \end{cases}\)(tmđk)
Vận tốc ô tô dự định đi từ A đến B là 50 km/h
Thời gian ô tô dự định đi từ A đến B là 3 h
Suy ra độ dài quãng đường AB: \(xy=50.3=150\)(km)
Vậy độ dài quãng đường AB là 150 km.
(Hệ phương trình thì bạn tự giải nhé)