Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có số học sinh lớp đó là x thì x+1 chia hết cho
2,3,4,5,6
Vậy Ta tìm bội của 2,3,4,5,6 là:60;120;180;240
X có thể là 60;120;180;240(chú ý bội này phải dưới 300 hs)
Và x+1=60
=) x=59(0 chia hết cho 7 loại)
x+1=120
=) x=119(chia hết cho 7 được)
x+1=180
=) x=179(0 chia hết cho 7 loại)
x+1=240
=) x=239(0 chia hết cho 7 loại)
Vậy số học sinh của lớp này là:119 hoc sinh
Đáp số:119 học sinh
Gọi số hs cần tìm là x ( 0<x<300)
Theo đề bài ta có: x + 1 \(⋮2;3;4;5;6\)
Lại có 0 < x < 300 => (x+1) = 60; 120; 180; 240
Với x+1=60 thì x=59(loại vì không chia hết cho 7)
Với x+1= 120 thì x=119(Thỏa mãn)
Với x+1=180 thì x=179(loại vì không chia hết cho 7)
Với x+1=240 thì x=239(loại vì không chia hết cho 7)
Vậy số học sinh cần tìm là 199.
((( Mình chỉ giải sơ sơ thôi... Bạn tự thêm thắt sao cho bài chặt chẽ hơn)))
#Chúc cậu học tốt.. Tớ lượn
chia hết,suy ra và thuộc bạn ghi kí hiệu nha. sorry
gọi số học sinh là x(x thuộc N*;x<300)
theo đấu bài ta có:
x+1 chia hết cho 2
x+1 chia hết cho 3
x-1 chia hết cho 4
x+1 chia hết cho5
x+1 chia hết cho6
suy ra x+1 thuộc BC(2,3,4,5,6)
2=2
3=3
4=22
5=5
6=2.3
TSNTC,R:2,3,5
BCNN(2,3,4,5,6)=22.3.5=60
BC(2,3,4,5,6)=B(60)={0;60;120;240;360;...}
suy ra x+1 thuộc {0;60;120;240;360;...}
vậy x thuộc{59;119;239;359;...}
mà x chia hết cho 7
suy ra x =119
vậy số học sinh là 119 học sinh
Gọi số cần tìm là a ( a thuộc N*)
Khi xếp hàng 2, hang 3, hàng 4, hàng 5, hàng 6 đều thiếu 1 người
=> a+1 thuộc BC (2,3,4,5,6)
2=2; 3=3; 4=22; 5=5; 6=2.3
BCNN (2,3,4,5,6)=22.3.5=60
a+1 thuộc BC (2,3,4,5,6)=B(60)={0;60;120;180;....}
A thuộc {59;119;179;239;...}
Vì a<300 và a chia hết cho 7 => a=119
Vậy số học sinh cần tìm là 119 học sinh
Tính ước chung lớn nhất của 2 ; 3 ; 4 ; 5 ; 6 : \(ƯC\left(2;3;4;5;6\right)=\left\{60;120;180;240;...\right\}\)
Vì khi xếp hàng 2 ; 3 ; 4 ; 5 ; 6 đều thiếu một người tức là khi chia cho các số đó thì thiếu 1 để có phép chia hết
Mà số hs chưa đến 300 nên các số đó là \(\left\{59;119;179;239;299\right\}\)
Mà xếp hàng 7 thì vừa nên số hs chia hết cho 7. Ở đây có mỗi 119 chia hết cho 7
=> Vậy số học sinh là 119
gọi số hs là a
ta có :
a chia 2,3,4,5,6 đều thiếu 1
=>a+1 chia hết cho 2,3,4,5,6
=>a+1 thuộc BC(2,3,4,5,6)
2=2
3=3
4=22
5=5
6=2.3
=>BCNN(2,3,4,5,6)=22.3.5=60
=>a+1 thuộc B(60)=0;60;120;180;240;300...}
=>a thuộc {59;119;179;239;299...}
mà a<300 và a chia hết cho 7
=>a=119
Giải
Ta có số học sinh lớp đó là x thì x+1 chia hết cho 2,3,4,5,6
Vậy Ta tìm bội của 2,3,4,5,6 là:60;120;180;240
X có thể là 60;120;180;240﴾chú ý bội này phải dưới 300 hs﴿
Và +x+1=60
x=59﴾0 chia hết cho 7 loại﴿
+ x+1=120 x=119﴾chia hết cho 7 được﴿
+x+1=180 x=179﴾0 chia hết cho 7 loại﴿
+x+1=240 x=239﴾0 chia hết cho 7 loại﴿
Vậy số học sinh của lớp này là:119 hoc sinh Đáp số:119 học sinh
Tick nha !!!
Gọi số học sinh là a (0<a<300)
Ta có a+1 là bội chung của 2,3,4,5,6 và 1<a+1<301.Do a\(⋮\) 7 ta tìm được a+1=120 nên a=119.Số học sinh la 119 người
Gọi số học sinh của khối là x.
Khi xếp x học sinh vào hàng 2;3;4;5;6 đều thiếu 1 người nghĩa là x chia cho 2;3;4;5;6 dư 1.Xếp hàng 7 thì vừa đủ có nghĩa là x chia hết cho 7.
=> x+1\(⋮\) 2;3;4;5;6
=> x+1\(\in\)BC(2;3;4;5;6)
=> x+1 \(\in\) {0;60;120;180;260;320;....}
Mà 0\(\le\)x+1\(\le\)300
=> Nếu x+1=120 thì x= 119\(⋮\)7
Nếu x+1=180 thì x= 179\(⋮̸\) 7
Vậy số học sinh của khối là 119 em
Gọi m là số học sinh cần tìm của khối ( m ∈ N* và m < 300)
Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 thiếu 1 người nên:
(m+1) ⋮2; (m + 1) ⋮3; (m + 1) ⋮ 4; (m+ 1) ⋮5; (m + 1) ⋮6
Suy ra: (m + 1) ∈ BC(2; 3; 4; 5; 6) và m + 1 < 301 (vì m < 3000).
Ta có 2 = 2; 3 = 3; 4 = 22; 5 = 5 và 6 = 2.3
BCNN(2; 3; 4; 5; 6) = 22.3.5 = 60
BC(2; 3; 4; 5; 6) = {0; 60; 120; 180; 240; 300; ...}
Vì m + 1 < 301 nên m + 1 ∈ {60; 120; 180; 240; 300}
Suy ra m ∈ {59; 119; 179; 239; 299} (1)
* Do khi xếp hàng 7 thì vừa đủ nên m ⋮ 7 (2)
Từ (1) và (2) suy ra: m = 119
Vậy khối có 119 học sinh
Gọi a là số học sinh cần tìm của khối ( a ∈ N* và a < 300)
Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 thiếu 1 người nên:
(a+1) ⋮2; (a + 1) ⋮3; (a + 1) ⋮ 4; (a+ 1) ⋮5; (a + 1) ⋮6
Suy ra: (a + 1) ∈ BC(2; 3; 4; 5; 6) và a + 1 < 301 (vì a < 300).
Ta có 2 = 2.1; 3 = 3.1; 4 = 2.2; 5 = 5.1 và 6 = 2.3
BCNN(2; 3; 4; 5; 6) = 2.2.3.5 = 60
BC(2; 3; 4; 5; 6) = {0; 60; 120; 180; 240; 300; ...}
Vì a + 1 < 301 nên a + 1 ∈ {60; 120; 180; 240; 300}
Suy ra a ∈ {59; 119; 179; 239; 299} (1)
* Do khi xếp hàng 7 thì vừa đủ nên a ⋮ 7 (2)
Từ (1) và (2) suy ra: a = 119
Vậy khối có 119 học sinh
Gọi số học sinh phải tìm là a ( 0<a<300 ) và a chia hết cho 7
Khi xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 đều thiếu 1 người nên a+1 chia hết cho cả 2,3,4,5,6.
a+1 ∈ BC (2,3,4,5,6)
BCNN(2,3,4,5,6) = 60
BC(2,3,4,5,6) = {0;60;120;180;240;300;360;...}
a+1 ∈ {0;60;120;180;240;300;360;...}
Vì 0<a<300 1<a+1<301 và a chia hết 7.
nên a+1 = 120 a = 119
đáp số........
Gọi số học sinh của trường là A, theo đề bài ta có :
A + 1 chi hết cho 2,3,4,5 nên số nhỏ nhất là :
A + 1 = 3 x 4 x 5 = 60, số học sinh chưa đến 300 nên lần lượt ta tìm được là : 60; 120; 180; 240; 300
=> A = 59; 119; 179; 199
Do số học sinh của trường xếp 7 hàng là đủ nên số học sinh của trường là 199