K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2019

\(\frac{x-b-c}{a}+\frac{x-c-a}{b}+\frac{x-a-b}{c}=3\)

\(\Leftrightarrow\frac{bc\left(x-b-c\right)}{abc}+\frac{ac\left(x-c-a\right)}{abc}+\frac{ab\left(x-a-b\right)}{abc}=3\)

\(\Leftrightarrow\frac{bcx-b^2c-bc^2}{abc}+\frac{acx-ac^2-a^2c}{abc}+\frac{abx-a^2b-ab^2}{abc}=3\)

\(\Leftrightarrow bcx-b^2c-bc^2+acx-ac^2-a^2c+abx-a^2b-ab^2=3abc\)

Đến đây tự giải tiếp

19 tháng 1 2019

\(\frac{x-b-c}{a}+\frac{x-c-a}{b}+\frac{x-a-b}{c}=3\)

\(\Leftrightarrow\frac{x-b-c}{a}-1+\frac{x-c-a}{b}-1+\frac{x-a-b}{c}-1=0\)

\(\Leftrightarrow\frac{x-a-b-c}{a}+\frac{x-b-c-a}{b}+\frac{x-a-b-c}{c}=0\)

\(\Leftrightarrow\left(x-a-b-c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)

Tự biện luận nốt

9 tháng 8 2017

a) \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)

\(=\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

b) \(\dfrac{\left(a^2-\left(b+c\right)^2\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)

\(=\dfrac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(\left(a-c\right)^2-b^2\right)}\)

\(=\dfrac{\left(a-c-b\right)\left(a-c+b\right)}{\left(a-c-b\right)\left(a-c+b\right)}=1\)

c) \(\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)

\(=\dfrac{x-1}{x^3}-\dfrac{x+1}{x^2\left(x-1\right)}+\dfrac{3}{x\left(x-1\right)^2}\)

\(=\dfrac{\left(x-1\right)^3-x\left(x+1\right)\left(x-1\right)+3x^2}{x^3\left(x-1\right)^2}\)

\(=\dfrac{x^3-3x^2+3x-1-x^3+x+3x^2}{x^3\left(x-1\right)^2}\)

\(=\dfrac{4x-1}{x^3\left(x-1\right)^2}\)

d) \(\left(\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\right):\dfrac{x-y}{x}\)

\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{1}{x+y}.\dfrac{x^3-y^3}{xy}\right):\dfrac{x-y}{x}\)

\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}\right):\dfrac{x-y}{x}\)

\(=\dfrac{\left(x-y\right)\left(x^2+2xy+y^2-x^2-xy-y^2\right)}{xy\left(x+y\right)}.\dfrac{x}{x-y}\)

\(=\dfrac{x}{x+y}\)

10 tháng 8 2017

thanks hihi

a: \(=\dfrac{x+1}{x+2}\cdot\dfrac{x+3}{x+2}\cdot\dfrac{x+1}{x+3}=\dfrac{\left(x+1\right)^2}{\left(x+2\right)^2}\)

b: \(=\dfrac{x+1}{x+2}:\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x+3\right)^2}\)

\(=\dfrac{x+1}{x+2}\cdot\dfrac{\left(x+3\right)^2}{\left(x+1\right)\left(x+2\right)}=\dfrac{\left(x+3\right)^2}{\left(x+2\right)^2}\)

c: \(=\dfrac{\left(x+3\right)\left(x-1\right)-\left(2x-1\right)\left(x+1\right)-\left(x-3\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+2x-3-2x^2-2x+x+1-x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-x^2+1}{\left(x-1\right)\left(x+1\right)}=-1\)

9 tháng 9 2018

1 ) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=-15\)

\(\Leftrightarrow x^3-6x^2+12x-8-\left(x^3-27\right)+6\left(x^2+2x+1\right)=-15\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=-15\)

\(\Leftrightarrow\left(x^3-x^3\right)+\left(6x^2-6x^2\right)+\left(12x+12x\right)+\left(27+6-8\right)=-15\)

\(\Leftrightarrow24x+25=-15\)

\(\Leftrightarrow24x=-40\)

\(\Leftrightarrow x=-\dfrac{5}{3}\)

Vậy \(x=-\dfrac{5}{3}\)

19 tháng 11 2018

a, \(\dfrac{x^2-x}{x-2}+\dfrac{4-3x}{x-2}\)

\(=\dfrac{x^2-x+4-3x}{x-2}=\dfrac{x^2-4x+4}{x-2}\)

19 tháng 11 2018

c) \(\dfrac{2}{x^2-9}+\dfrac{1}{x+3}\)

Ta có: \(\dfrac{1}{x+3}=\dfrac{1\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x^2-9}\)

\(\Rightarrow\dfrac{2}{x^2-9}+\dfrac{1}{x+3}=\dfrac{2}{x^2-9}+\dfrac{x-3}{x^2-9}=\dfrac{2+x-3}{x^2-9}=\dfrac{x-1}{x^2-9}\)

21 tháng 10 2018

@Nguyễn Thanh Hằng đọc xong xóa đii nha

NV
12 tháng 11 2018

ĐK: \(x\ne b;x\ne c\)

Phương trình tương đương:

\(\dfrac{2}{b-x}\left(\dfrac{1}{a}-\dfrac{1}{b}\right)=\dfrac{1}{c-x}\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\)

TH1: Nếu \(a=b\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}\Rightarrow\) pt tương đương \(0=0\) \(\Rightarrow\) đúng với mọi x

TH2: nếu \(a\ne b\), chia cả 2 vế cho \(\dfrac{1}{a}-\dfrac{1}{b}\) ta được:

\(\dfrac{2}{b-x}=\dfrac{1}{c-x}\Leftrightarrow2c-2x=b-x\Leftrightarrow x=2c-b\)

18 tháng 11 2018

Khó vậy mày.

5 tháng 10 2017

Mấy bài này đăng nhiều rồi bạn ;v

Bài 1: Nhân cả 2 vế cho a+b+c rồi rút gọn được đpcm

Bài 2: Thêm 1 rồi bớt 1 :v (x+y+xy+1-1)