K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 10 2020

Phương trình hoành độ giao điểm: \(x^2-4x+m=0\) (1)

(P) cắt Ox tại 2 điểm pb \(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb

\(\Leftrightarrow\Delta'=4-m>0\Rightarrow m< 4\)

Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow x_1;x_2\) lần lượt là hoành độ OA, OB

\(\Rightarrow\left\{{}\begin{matrix}OA=\left|x_1\right|\\OB=\left|x_2\right|\end{matrix}\right.\) \(\Rightarrow\left|x_1\right|=3\left|x_2\right|\Rightarrow\left\{{}\begin{matrix}x_1=3x_2\\x_1=-3x_2\end{matrix}\right.\)

Th1: \(x_1=3x_2\) kết hợp Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1=3x_2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=3\\x_2=1\end{matrix}\right.\) \(\Rightarrow m=x_1x_2=3\)

TH2: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1=-3x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=6\\x_2=-2\end{matrix}\right.\)

\(\Rightarrow m=x_1x_2=-12\)

Vậy \(\left[{}\begin{matrix}m=3\\m=-12\end{matrix}\right.\)

12 tháng 10 2019

Phương trình hoành độ giao điểm của (P) và Ox: x 2 - 4 x + m = 0 1

Để (P) cắt Ox tại hai điểm phân biệt thì (1) có hai nghiệm phân biệt  x 1 ,   x 2

⇔ Δ ' > 0 a ≠ 0 ⇔ 4 − m > 0 1 ≠ 0 ⇔ m < 4

Giả sử  A x 1 ; 0 B x 2 ; 0  và  x 1 + x 2 = 4 ,   x 1 x 2 = m

Ta có:  O A = O B ⇔ x 1 = 3 x 2 ⇔ x 1 = 3 x 2 x 1 = − 3 x 2

Trường hợp 1:  x 1 = 3 x 2 ⇒ x 1 = 3 x 2 = 1 ⇒ m = 3  (thỏa mãn)

Trường hợp 2:  x 1 = - 3 x 2 ⇒ x 1 = 6 x 2 = − 2 ⇒ m = − 12  (thỏa mãn)

Vậy S = −12 + 3 = −9.

Đáp án cần chọn là: D

NV
20 tháng 9 2019

Do (P) đi qua \(M\left(4;3\right)\Rightarrow16a+4b+c=3\)

Do (P) cắt Ox tại \(N\left(3;0\right)\Rightarrow9a+3b+c=0\)

\(\Rightarrow7a+b=3\Rightarrow b=3-7a\)

\(9a+3\left(3-7a\right)+c=0\Rightarrow c=12a-9\)

Phương trình hoành độ giao điểm (P) và Ox: \(ax^2+bx+c=0\)

\(\Delta=b^2-4ac=\left(3-7a\right)^2-4a\left(12a-9\right)=\left(a-3\right)^2\)

Do \(\left\{{}\begin{matrix}x_P< x_I< x_N< x_M\\y_N< y_M\end{matrix}\right.\) \(\Rightarrow\) hàm \(y=ax^2+bx+c\) đồng biến trên \(\left(-\frac{b}{2a};+\infty\right)\)

\(\Rightarrow a>0\)

\(\Rightarrow x_N=\frac{-b+\left|a-3\right|}{2a}=\frac{7a-3+\left|a-3\right|}{2a}=3\)

\(\Rightarrow\left|a-3\right|=3-a\Rightarrow0< a< 3\)

\(\Rightarrow S_{INP}=\frac{1}{2}\left(x_N-x_P\right).\left|\frac{-\Delta}{4a}\right|=\frac{1}{2}\frac{\sqrt{\Delta}}{a}.\frac{\Delta}{4a}=1\)

\(\Leftrightarrow\left(3-a\right)\left(a-3\right)^2=8a^2\)

\(\Leftrightarrow a^3-a^2+27a-27=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+27\right)=0\Rightarrow a=1\)

\(\Rightarrow b=-4\) ; \(c=3\)

\(\left(P\right):y=x^2-4x+3\)

NV
20 tháng 9 2019

Ý bạn là công thức tính diện tích tam giác INP?

Kẻ \(IH\perp Ox\Rightarrow IH=\left|y_I\right|=\left|\frac{-\Delta}{4a}\right|\)

\(NP=\left|x_N-x_P\right|=x_N-x_P=\frac{\sqrt{\Delta}}{a}\) \(\left(\frac{-b+\sqrt{\Delta}}{2a}-\frac{-b-\sqrt{\Delta}}{2a}=\frac{\sqrt{\Delta}}{a}\right)\)

Sau đó thay vào thôi

30 tháng 11 2023

Phương trình hoành độ giao điểm là:

\(x^2-4x+m=0\)

\(\text{Δ}=\left(-4\right)^2-4m=16-4m\)

Để (P) cắt Ox tại hai điểm phân biệt thì Δ>0

=>-4m+16>0

=>-4m>-16

=>m<4

(P) cắt trục Ox tại hai điểm A,B phân biệt nên \(A\left(x_A;0\right);B\left(x_B;0\right)\)

OA=3OB

=>\(OA^2=9OB^2\)

=>\(\left(x_A-0\right)^2+\left(y_A-0\right)^2=9\left[\left(x_B-0\right)^2+\left(y_B-0\right)^2\right]\)

=>\(\left(x_A\right)^2+\left(y_A\right)^2=9x_B^2+9y_B^2\)

=>\(x_A^2-9x_B^2=y_A^2-9y_B^2\)

=>\(x_A^2-9x_B^2=0\)

=>\(\left[{}\begin{matrix}x_A=3x_B\\x_A=-3x_B\end{matrix}\right.\)

Theo Vi-et, ta có:

\(x_A+x_B=4\) và \(x_A\cdot x_B=m\)

TH1: \(x_A=3x_B\)

\(x_A+x_B=4\)

=>\(3x_B+x_B=4\)

=>\(x_B=1\)

=>\(x_A=3\)

\(m=x_A\cdot x_B=1\cdot3=3\)

TH2: \(x_A=-3x_B\)

\(x_A+x_B=4\)

=>\(-3x_B+x_B=4\)

=>\(-2x_B=4\)

=>\(x_B=-2\)

\(x_A=-3\cdot x_B=-3\cdot\left(-2\right)=6\)

\(m=x_A\cdot x_B=6\cdot\left(-2\right)=-12\)