K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2018

3) 9h30phút-30phút=9h

Gọi x(km) là quãng đường từ A đến B (ĐK X>0)

Thời gian xe đi từ A đến B là \(\dfrac{X}{15}\)(h)

Thời gian xe đi từ B đến A là \(\dfrac{X}{12}\)(h)

Theo đề bài ta có phương trình :

\(\dfrac{x}{15}+\dfrac{x}{12}=9\)

Giải pt:\(\dfrac{X}{15}+\dfrac{x}{12}=9\Leftrightarrow\dfrac{4x}{60}+\dfrac{5x}{60}=\dfrac{540}{60}\Rightarrow4x+5x=540\Leftrightarrow9x=540\Leftrightarrow x=60\)

Vậy quãng đường từ A đến B là 60 km

19 tháng 4 2018

\(15x-3\left(3x-2\right)=45-5\left(2x-5\right)\Leftrightarrow15x-9x+6=45-10x+25\Leftrightarrow16x=64\Leftrightarrow x=4\)

12 tháng 4 2018

c) \(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow2\left(x-2\right)-\left(x+1\right)=3x-11\)

\(\Leftrightarrow2x-4-x-1=3x-11\)

\(\Leftrightarrow2x-x-3x=-11+1+4\)

\(\Leftrightarrow-2x=-6\)

\(\Leftrightarrow x=3\)

12 tháng 4 2018

Gọi quãng đường người đi xe máy từ A đến B là x(km)(x>0)

thời gian người đi xe máy từ A đến B là \(\dfrac{x}{40}h\)

thời gian người đi xe máy trở về là\(\dfrac{x}{30}h\)

Theo đầu bài ta có phương trình

Đổi 45p=\(\dfrac{3}{4}h\)

\(\dfrac{x}{30}-\dfrac{x}{40}=\dfrac{3}{4}\)

\(\Leftrightarrow40x-30x=90\)

\(\Leftrightarrow10x=90\)

\(\Leftrightarrow x=9\left(tm\right)\)

Vậy quãng đường AB dài 9(km)

a: \(\Leftrightarrow20x^2-12x+15x+5< 10x\left(2x+1\right)-30\)

\(\Leftrightarrow20x^2+3x+5< 20x^2+10x-30\)

=>3x+5<10x-30

=>-7x<-35

hay x>5

b: \(\Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)>4x\left(1-3x\right)-15x\)

\(\Leftrightarrow20x-80-12x^2-6x>4x-12x^2-15x\)

=>14x-80>-11x

=>25x>80

hay x>16/5

22 tháng 4 2017

Giải bài 31 trang 48 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 31 trang 48 SGK Toán 8 Tập 2 | Giải toán lớp 8

2 tháng 4 2019

biểu diễn trục số trên máy làm thế nào

19 tháng 3 2018

Câu 3:

Gọi quãng đường AB là x ( km, x>0)

Thời gian lúc đi là: \(\dfrac{x}{30}h\)

Thời gian lúc về là: \(\dfrac{x}{40}h\)

45' = \(\dfrac{3}{4}h\)

Theo đề ra ta có pt:

\(\dfrac{x}{30}-\dfrac{3}{4}=\dfrac{x}{40}\)

\(\Leftrightarrow4x-90=3x\)

\(\Leftrightarrow x=90\) ( nhận)

Vậy quẵng đường AB dài 90 km

19 tháng 3 2018

\(\left(m-2\right)x+3=0\)

a. Để pt trên là pt bậc nhất 1 ẩn thì \(m-2\ne0\)=> m khác 2

b. Với m = 5 ta được:

\(\left(5-2\right)x+3=0\)

\(\Leftrightarrow3x+3=0\)

\(\Leftrightarrow x=-1\)

Vậy m = 0 thì nghiệm của pt là x = -1

a: \(\Leftrightarrow1-x+3x+3=2x+3\)

=>2x+4=2x+3(vô lý)

b: \(\Leftrightarrow\left(x+2\right)^2-2x+3=x^2+10\)

\(\Leftrightarrow x^2+4x+4-2x+3=x^2+10\)

=>4x+7=10

hay x=3/4

d: \(\Leftrightarrow\left(-2x+5\right)\left(3x-1\right)+3\left(x-1\right)\left(x+1\right)=\left(x+2\right)\left(1-3x\right)\)

\(\Leftrightarrow-6x^2+2x+15x-5+3\left(x^2-1\right)=\left(x+2\right)\left(1-3x\right)\)

\(\Leftrightarrow-6x^2+17x-5+3x^2-3=x-3x^2+2-6x\)

\(\Leftrightarrow-3x^2+17x-8=-3x^2-5x+2\)

=>22x=10

hay x=5/11

20 tháng 1 2019

a, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)

\(6x^2-5x+3=2x-9x+6x^2\)

\(6x^2-5x+3-6x^2+9x-2x=0\)

\(2x+3=0\)

\(2x=-3\)

\(x=-\dfrac{3}{2}\)

20 tháng 1 2019

b, \(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)

\(\dfrac{20\left(x-4\right)}{4.10}-\dfrac{4\left(3+2x\right)}{4.10}=\dfrac{5x}{5}+\dfrac{1-x}{5}\)

\(\dfrac{20x-80}{40}-\dfrac{12+8x}{40}=\dfrac{5x+1-x}{5}\)

\(\dfrac{20x-80-12-8x}{40}=\dfrac{4x+1}{5}\)

\(\dfrac{12x-92}{40}-\dfrac{4x+1}{5}=0\)

\(\dfrac{12x-92}{40}-\dfrac{8\left(4x+1\right)}{40}=0\)

\(12x-92-8\left(4x+1\right)=0\)

⇔ 12x - 92 - 32x - 8 = 0

⇔ -100 - 20x = 0

⇔ 20x = -100

⇔ x = -100 : 20

⇔ x = -5

b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)

d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)

\(\Leftrightarrow x^2+14x+68=0\)

hay \(x\in\varnothing\)