K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3:

a: \(=\left(4\sqrt{2}-6\sqrt{2}\right)\cdot\dfrac{\sqrt{2}}{2}=-2\sqrt{2}\cdot\dfrac{\sqrt{2}}{2}=-2\)

b: \(=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-2\left(\sqrt{6}-1\right)\)

\(=\sqrt{6}-2\sqrt{6}+2=2-\sqrt{6}\)

20 tháng 12 2017

1) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ge-1\end{matrix}\right.\)
2) \(A=2^2+\left(3\sqrt{2}\right)^2+2.2.3\sqrt{2}-12\sqrt{2}=4+18+12\sqrt{2}-12\sqrt{2}=22\)\(B=\sqrt{4+3+4\sqrt{3}-\sqrt{3}=\sqrt{7+3\sqrt{3}}}\)

3) a) \(A=\dfrac{x\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{x\sqrt{x}-2x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)b) Ta có :
\(x=3+2\sqrt{2}=\left(\sqrt{2}\right)^2+2.1.\sqrt{2}+1^2=\left(\sqrt{2}+1\right)^2\)Thay x vào A ta đc : \(A=\sqrt{x}-1=\sqrt{\left(\sqrt{2}+1\right)^2}-1=\sqrt{2}+1-1=\sqrt{2}\)4) a)
\(\sqrt{9x-27}+\sqrt{x-3}-\dfrac{1}{2}\sqrt{4x-12}=7\Leftrightarrow3\sqrt{x-3}+\sqrt{x-3}-\dfrac{1}{2}.2.\sqrt{x-3}=7\Leftrightarrow3\sqrt{x-3}=7\Leftrightarrow x-3=\dfrac{49}{9}\Leftrightarrow x=\dfrac{76}{9}\)b)Đề chuyển thánh sinB=3/4 nha
Ta có: sin2B+cos2B=1=> cosB=\(\dfrac{\sqrt{7}}{4}\)
cosC=sinB=3/4

20 tháng 12 2017

tks @Đỗ Ngọc Hải nha

12 tháng 11 2017

a) \(\sqrt{4x+8}-\sqrt{9x+18}+\sqrt{x+2}=\sqrt{x+5}\)

\(\Leftrightarrow\sqrt{4\left(x+2\right)}-\sqrt{9\left(x+2\right)}+\sqrt{x+2}=\sqrt{x+5}\)

\(\Leftrightarrow2\sqrt{x+2}-3\sqrt{x+2}+\sqrt{x+2}=\sqrt{x+5}\)

\(\Leftrightarrow0\sqrt{x+2}=\sqrt{x+5}\Leftrightarrow0=\sqrt{x+5}\)

\(\Leftrightarrow0=x+5\Leftrightarrow-5=x\)

Vậy phương trình đã cho có nghiệm duy nhất là x = -5

b) ĐKXĐ: \(x\ge0;x\ne1\)

\(T=\left(\dfrac{1}{1+2\sqrt{x}}-\dfrac{1}{\sqrt{3}+2}\right):\dfrac{1-\sqrt{x}}{x+4\sqrt{x}+4}\)

\(=\left(\dfrac{\sqrt{3}+2-1-2\sqrt{x}}{\left(1+2\sqrt{x}\right)\left(\sqrt{3}+2\right)}\right):\left(\dfrac{1-\sqrt{x}}{\left(\sqrt{x}+2\right)^2}\right)\)

\(=\dfrac{1-2\sqrt{x}+\sqrt{3}}{\left(1+2\sqrt{x}\right)\left(\sqrt{3}+2\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}\)

12 tháng 11 2017

a) Bổ sung: ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x+2}XĐ\Leftrightarrow x+2\ge0\\\sqrt{x+5}XĐ\Leftrightarrow x+5\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\ge-5\end{matrix}\right.\Rightarrow}x\ge-2}\) Sau khi tìm được x = -5 ta thấy k thỏa mãn Đk: \(x\ge-2\)

Vậy pt đã cho là vô nghiệm

a: \(A=\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\dfrac{4+\sqrt{3}}{5-2\sqrt{3}}}\)

\(=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{\sqrt{2}}=-\sqrt{2}\)

b: \(B=\dfrac{x\sqrt{x}-2x+28}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}-\dfrac{x-16}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}-\dfrac{\left(\sqrt{x}+8\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-2x+28-x+16-x-9\sqrt{x}-8}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-4\sqrt{x}-9\sqrt{x}+36}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}=\dfrac{x-9}{\sqrt{x}+1}\)

\(A=\sqrt{\dfrac{18-3\sqrt{3}}{11}}-\sqrt{2+\sqrt{3}}\)

\(=\dfrac{\sqrt{11\left(18-3\sqrt{3}\right)}}{11}-\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{11\left(18-3\sqrt{3}\right)}}{11}-\dfrac{\sqrt{3}+1}{\sqrt{2}}\)

\(=\dfrac{\sqrt{11\left(18-3\sqrt{3}\right)}}{11}-\dfrac{\sqrt{6}+\sqrt{2}}{2}\)

\(=\dfrac{2\sqrt{11\left(18-3\sqrt{3}\right)}-11\sqrt{6}-11\sqrt{2}}{22}\)

b: \(=\dfrac{x\sqrt{x}-2x+28-x+16-x-9\sqrt{x}-8}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-4x-9\sqrt{x}+36}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}=\dfrac{x-9}{\sqrt{x}+1}\)

13 tháng 8 2018

Tớ làm nốt nè :3

\(1b.3\sqrt{2}+4\sqrt{8}-\sqrt{18}=3\sqrt{2}+8\sqrt{2}-3\sqrt{2}=8\sqrt{2}\)

\(c.\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}=\dfrac{2-\sqrt{3}+2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=4\)

\(2a.\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow4x^2-4x+1=9\)

\(\Leftrightarrow4x^2+4x-8x-8=0\)

\(\Leftrightarrow4\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

\(b.\sqrt{4x-4}-\sqrt{9x-9}+5\sqrt{x-1}=7\left(x\ge1\right)\)

\(\Leftrightarrow2\sqrt{x-1}-3\sqrt{x-1}+5\sqrt{x-1}=7\)

\(\Leftrightarrow4\sqrt{x-1}=7\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{4}\)

\(\Leftrightarrow x=\dfrac{65}{16}\)

c. Sai đề.

13 tháng 8 2018

Trưa hoặc tối t giúp c nhé

1 tháng 8 2018

3) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{4x-20}=4\)

\(\Leftrightarrow4x-20=16\)

\(\Leftrightarrow4x=36\)

\(\Leftrightarrow x=9\)

vậy ...

2 tháng 8 2018

1)

\(A=\dfrac{\sqrt{x}-2}{x-4}=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}\right)^2-2^2}\\ A=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{1}{\sqrt{x}+2}\)

\(B=\dfrac{x^2-2x\sqrt{2}+2}{x^2-2}=\dfrac{x^2-2x\sqrt{2}+\left(\sqrt{2}\right)^2}{x^2-\sqrt{2}}\\ B=\dfrac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}=\dfrac{\left(x-\sqrt{2}\right)}{\left(x+\sqrt{2}\right)}\)

\(C=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+\left(\sqrt{5}\right)^2}\\ C=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)

\(D=\dfrac{\sqrt{a}-2a}{2\sqrt{a}-1}=\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)}{2\sqrt{a}-1}=\sqrt{a}\)

\(E=\dfrac{x^2-2}{x-\sqrt{2}}=\dfrac{x^2-\left(\sqrt{2}\right)^2}{x-\sqrt{2}}\\ E=\dfrac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{2}}=x+\sqrt{2}\)

\(F=\dfrac{\sqrt{x}-3}{x-9}=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}\right)^2-3^2}\\ F=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ F=\dfrac{1}{\sqrt{x}+3}\)