K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi năng suất ban đầu là x, thời gian ban đầu là y

Theo đề, ta có hệ: xy=120 và 2x+(x+4)(y-2-1)-16=120

=>xy=120 và 2x+(x+4)(y-3)=136

=>xy=120 và 2x+xy-3x+4y-12=136

=>xy=120 và -x+4y+120-12=136

=>-x+4y=28 và xy=120

=>x=4y-28 và y(4y-28)=120

=>y=10 và x=4*10-28=12

Một công ty kinh doanh chuẩn bị cho một đợt khuyến mại nhằm thu hút khách hàng bằng cách tiến hành quảng cáo sản phẩm của công ty trên hệ thống phát thanh và truyền hình. Chi phí cho 1 phút quảng cáo trên sóng phát thanh là 800.000 đồng, trên sóng truyền hình là 4.000.000 đồng. Đài phát thanh chỉ nhận phát các chương trình quảng cáo dài ít nhất là 5 phút. Do nhu cầu quảng cáo trên truyền hình lớn...
Đọc tiếp

Một công ty kinh doanh chuẩn bị cho một đợt khuyến mại nhằm thu hút khách hàng bằng cách tiến hành quảng cáo sản phẩm của công ty trên hệ thống phát thanh và truyền hình. Chi phí cho 1 phút quảng cáo trên sóng phát thanh là 800.000 đồng, trên sóng truyền hình là 4.000.000 đồng. Đài phát thanh chỉ nhận phát các chương trình quảng cáo dài ít nhất là 5 phút. Do nhu cầu quảng cáo trên truyền hình lớn nên đài truyền hình chỉ nhận phát các chương trình dài tối đa là 4 phút. Theo các phân tích, cùng thời lượng một phút quảng cáo, trên truyền hình sẽ có hiệu quả gấp 6 lần trên sóng phát thanh. Công ty dự định chi tối đa 16.000.000 đồng cho quảng cáo. Hỏi công ty cần đặt thời lượng quảng cáo trên sóng phát thanh và truyền hình lần lượt là bao nhiêu  để hiệu quả nhất?

A. (20 ; 0)             

B. (5 ; 0)

C. (5 ; 3)

D. Đáp án khác

1
14 tháng 10 2019

Chọn C

+ Gọi thời lượng công ty đặt quảng cáo trên sóng phát thanh là x  (phút), trên truyền hình là y (phút). Chi phí cho việc này là:800.000x + 4.000.000y   (đồng)

Mức chi này không được phép vượt qúa mức chi tối đa, tức:

800.000x+ 4.000.000y  16.000.000 hay x+ 5y-20 ≤ 0

Do các điều kiện đài phát thanh, truyền hình đưa ra, ta có:x ≥ 5 và y ≤ 4

Đồng thời do x; y  là thời lượng nên x; y ≥ 0

Hiệu quả chung của quảng cáo là x+ 6y.

Bài toán trở thành: Xác định x; y  sao cho:

M( x; y) = x + 6y đạt giá trị lớn nhất.

Với các điều kiện : 

Trước tiên ta xác định miền nghiệm của hệ bất phương trình (*)

+Trong mặt phẳng tọa độ vẽ các đường thẳng

(d) : x + 5y - 20= 0 và (d’) ; x = 5; ( d’’) y = 4.

Khi đó miền nghiệm của hệ bất phương trình (*) là phần mặt phẳng(tam giác) không tô màu trên hình vẽ

Giá trị lớn nhất của M(  x; y) =x+ 6y  đạt tại một trong các điểm  (5;3) ; ( 5;0)  và ( 20; 0).

Ta có M (5; 3) = 23; M( 5; 0) = 5 và M( 20; 0) = 20.

+ Suy ra giá trị lớn nhất của M( x; y)  bằng 23  tại ( 5; 3)  tức là nếu đặt thời lượng quảng cáo trên sóng phát thanh là 5 phút và trên truyền hình là 3 phút thì sẽ đạt hiệu quả nhất.

Một công ty bắt đầu sản xuất và bán một loại máy tính xách tay từ năm 2018. Số lượng loại máy tính đó bán được trong hai năm liên tiếp 2018 và 2019 lần lượt là 3,2 nghìn và 4 nghìn chiếc. Theo nghiên cứu dự báo thị trường của công ty, trong khoảng 10 năm từ năm 2018, số lượng máy tính loại đó bán được mỗi năm có thể mô tả bởi một hàm số bậc hai.Giả sử t là thời gian (đơn vị...
Đọc tiếp

Một công ty bắt đầu sản xuất và bán một loại máy tính xách tay từ năm 2018. Số lượng loại máy tính đó bán được trong hai năm liên tiếp 2018 và 2019 lần lượt là 3,2 nghìn và 4 nghìn chiếc. Theo nghiên cứu dự báo thị trường của công ty, trong khoảng 10 năm từ năm 2018, số lượng máy tính loại đó bán được mỗi năm có thể mô tả bởi một hàm số bậc hai.

Giả sử t là thời gian (đơn vị theo năm) tính từ năm 2018. Số lượng loại máy đó bán đượng trong năm 2018 và 2019 lần lượt được biểu diễn bởi các điểm \((0;3,2)\) và \((1;4).\) Giả sử điểm \((0;3,2)\) là đỉnh của đồ thị của hàm số bậc hai này.

a) Lập công thức của hàm số mô tả số lượng máy xách tay bán được qua từng năm.

b) Tính số lượng máy tính xách tay đó bán được trong năm 2024.

c) Đến năm bao nhiêu thì số lượng máy tính xách tay đó bán được trong năm sẽ vượt mức 52 nghìn chiếc?

1
HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Gọi hàm số bậc hai cần tìm là: \(y = a{t^2} + bt + c.\)

Ta có: đỉnh \(I\left( {0;3,2} \right)\) và đi qua điểm \(\left( {1;4} \right)\)

nên \(\left\{ {\begin{array}{*{20}{c}}{ - \frac{b}{{2a}} = 0}\\{c = 3,2}\\{a + b + c = 4}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{b = 0}\\{c = 3,2}\\{a + c = 4}\end{array}\,\,} \right. \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = 0,8}\\{b = 0}\\{c = 3,2}\end{array}} \right.\)

Vậy hàm số cần tìm là: \(y = 0,8{t^2} + 3,2\)

b)  Thời gian từ năm 2018 đến năm 2024 là: \(t = 2024 - 2018 = 6\) năm

Số lượng máy tính xách tay bán được trong năm 2024 là:

\(0,{8.6^2} + 3,2 = 32\) nghìn chiếc

c) Năm bán đượng vượt mức 52 nghìn chiếc máy tính là:

\(\begin{array}{l}0,8{t^2} + 3,2 > 52\\ \Leftrightarrow \,\,0,8{t^2} - 48,8 > 0\\ \Leftrightarrow \,\,t \in \left( { - \infty ; - \sqrt {61} } \right) \cup \left( {\sqrt {61} ; + \infty } \right)\end{array}\)

Vì \(t > 0\) nên \(t \in \left( {\sqrt {61} ; + \infty } \right)\) hay \(t > \sqrt {61}  \approx 7,8\).

Từ năm thứ 8 hay năm 2026 thì số lượng máy tính xách tay bán ra vượt mức 52 nghìn chiếc.

11 tháng 5 2020
https://i.imgur.com/nbaTTsh.jpg
11 tháng 5 2020

Gọi số sản phẩm làm theo kế hoạch là \(x\) (sản phẩm)

=> Số ngày dự định làm xong là: \(\frac{x}{25}\) (ngày)

Số sản phẩm làm được sau khi cải tiến kĩ thuật là: \(x+10\) (sản phẩm)

=> Số ngày làm xong là: \(\frac{x+10}{30}\) (ngày)

Ta có: \(\frac{x}{25}-\frac{x+10}{30}=3\)

Giải phương trình đi bạn :)