Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n=2k thì (2k+1993^1994)(2k+1994^1993) chia hết cho 2 vì thừa số 2k+1994^1993 có 2k chia hết cho 2, 1994^1993 chia hết cho 2 (Vì 1994 chia hết cho 2)
Với n=2k+1 thì (2k+1993^1994+1)(2k+1+1994^1993) chia hết cho 2 vì thừa số 2k+1993^1994+1 có 1993^1994 lẻ, 1 lẻ nên 1993^1994+1 chẵn => 2k+1993^1994+1 chia hết cho 2.
Từ các điều trên ta có đpcm
Bạn chia ra hai trường hợp : n lẻ hoặc chẵn
Nếu n lẻ thì n + 1993 ^1994 chia hết cho 2 => tích đó chia hết cho 2
Trường hợp còn lại tương tự , mình chỉ gợi ý thôi bạn tự làm nha .
Bạn chia ra hai trường hợp : n là số lẻ hoặc chẵn
Nếu n lẻ thì n + 1993 ^1994 chia hết cho 2 => tích đó chia hết cho 2
Trường hợp còn lại tương tự , mình ko chắc lắm nhưng chúc bn giải đc bài còn lại!!
a)Xét các trường hợp:
n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3
n= 3k 1 (k ∈ N) A = 9k2 6k +1 chia cho 3 dư 1
Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .
b)Xét các trường hợp
n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.
n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1
= 4k(k+1)+1,
chia cho 4 dư 1(chia cho 8 cũng dư 1)
vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .
Chú ý: Từ bài toán trên ta thấy:
-Số chính phương chẵn chia hết cho 4
-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).
c) Các số 19932,19942 là số chính phương không chia hết cho 3 nên chia cho 3 dư 1,còn 19922 chia hết cho 3.
Vậy M chia cho 3 dư 2,không là số chính phương.
Các số 19922,19942 là số chính phương chẵn nên chia hết cho 4.
Các số 19932,19952 là số chính phương lẻ nên chia cho 4 dư 1.
Vậy số N chia cho 4 dư 2,không là số chính phương.
1. Ta có 2112 =(213)4 = 92614. Vì 54 < 9261 nên 544 < 92614
Vậy 544 < 2112.
( cách này chỉ áp dụng với một số trường hợp, trương hợp số lớn hơn thì khó làm !!!)