Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-1.3.3.3=\left(-3\right)^3\)
b) \(\left(-1\right).\left(-2\right).\left(-2\right)=-2^2\)
Chú ý có bao nhiu dấu trừ í
\(E=1+2+2^2+2^3+...+2^{2004}-2^{2005}\)
Đặt \(A=1+2+...+2^{2004}\)
\(\Rightarrow2A=2+2^2+...+2^{2005}\)
\(\Rightarrow2A-A=\left(2+2^2+...+2^{2005}\right)-\left(1+2+...+2^{2004}\right)\)
\(\Rightarrow A=2^{2005}-1\)
\(\Rightarrow E=2^{2005}-1-2^{2005}\)
\(\Rightarrow E=-1\)
1 + 3 + 5 + 7 + 9 + ..... + (2n - 1) = n2
Số các số hạng là:
(2n - 1 - 1) : 2 + 1 = n (số)
1 + 3 + 5 + 7 + 9 +.... + (2n - 1) = n.(2n - 1 + 1):2 = n.2n:2 = n.n = n2
Vậy 1+ 3 + 5 + 7 + 9 + .... + (2n - 1) = n2
1 + 3 + 5 + 7 + 9 + ... + (2n - 1 ) = n2
Số các số hạng là :
(2n - 1 - 1 ) : 2 + 1 = n ( số )
1 + 3 + 5 + 7 + 9 + ... + ( 2n - 1 ) = n . (2n - 1 + 1 ) : 2 = n . 2 : 2 = n . n = n2
Vậy ..........
dễ
ai đi qua tick cho mình nha
ai tick thì may mắn trọn đời
Đặt \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{60^2}\)
\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{59.60}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{59}-\frac{1}{60}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{60}=\frac{29}{60}>\frac{4}{9}\)
a)Đặt x^3+x^2=0
<=> x^2(x+1)=0
<=>x=0;x=-1
Vậy, nghiệm của đa thức x^3+x^2 là x=0;x=-1
b)Đặt x^3+x^2+x+1=0
<=> x^2(x+1)+(x+1)=0
<=>(x^2+1)(x+1)=0
<=>x^2=-1(vô lí vì x^2>0 với mọi x); x=-1
Vậy đa thức có nghiệm x=-1
a, x : (-1/2)^3 = -1/2
=> x : (-1/8) = -1/2
=> x = 4
vậy_
b, (3/4)^5.x = (3/4)^7
=> x = (3/4)^7 : (3/4)^5
=> x = (3/4)^2
=> x = 9/16
vậy-
c, (3/5)^8 : x = (-3/5)^6
=> (3/5)^8 : x = (3/5)^6
=> x = (3/5)^8 : (3/5)^6
=> x = (3/5)^2
=> x= 9 /25