Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 10^150 + 5.10^50+1=m^3 (m là số tự nhiên)
Ta thấy VT có tận cùng là 1, suy ra VP phải có tận cùng 1.
mà 1^3=1,2^3=8,... nên m phải có tận cùng là 1, hay m=10k+1 (k là số tự nhiên)
10^150 + 5.10^50+1=(10k+1)^3=1000.k^3+300.k^2+30.k+1
10^150 + 5.10^50 - 1000.k^3- 300.k^2-30.k=0
suy ra A=10^150 + 5.10^50 - 1000.k^3chia hết cho 3
10^150=(9+1)^150 chia 3 dư 1
5.10^50=5.(9+1)^50 chia 3 dư 2
1000k=999k+k
suy ra k chia hết cho 3
10^150=(9+1)^150 chia 9 dư 1
5.10^50=5.(9+1)^50 chia 9 dư 5
suy ra 10^150 + 5.10^50chia 9 dư 6 (**)
mà 1000.k^3+ 300.k^2+30.k chia hết cho 9 (do k chia hết cho 3) (***)
Từ (**)(***) suy ra mâu thuẫn.
Vậy 10^150 + 5.10^50+1không thể là lập phương của 1 số tự nhiên.
Ta có (n+1)4+n4+1= (n+1)4-n2+(n4+n2+1)
= (n2+2n+1)2-n2+(n4+n3+n2-n3-n2-n+n2+n+1)
= (n2+3n+1)(n2+n+1)+[n2(n2+n+1)-n(n2+n+1)+(n2+n+1)]
= (n2+3n+1)(n2+n+1)+(n2+n+1)(n2-n+1)
= (n2+n+1)(2n2+2n+2)
= 2(n2+n+1)2
Do 2 không phải là bình phương của một số tự nhiên nên (n+1)4+n4+1 không là bình phương của một số tự nhiên
Vậy (n+1)4+n4+1 ko là số chính phương với mọi n là số tự nhiên
Mk thêm vào một chút nhé.
Do 2 ko là bình phương của một số tự nhiên và n khác 0 nên 2(n2+n+1)2 ko là bình phương của một số tự nhiên n khác 0
=> (n+1)4+n4+1 ko là số chính phương với mọi n là số tự nhiên khác 0
A = 1^3 + 2^3 + 3^3 + 4^3
A = 1 + 8 + 27 + 64
A = 100
A = 10^2
=> A là một số chính phương
công thức nè: 1^3+2^3+...+n^3=(1+2+...+n)^2 điều kiện: n thuộc N*
a, b là 2 số tự nhiên liên tiếp nên a hoặc b sẽ là một số chẵn hoặc một số lẻ. => a=2k, b=2k+1, c=2k(2k+1)
P=a^2+b^2+c^2
P=(2k)^2+(2k+1)^2+[(2k)(2k+1)]^2
P=4k^2+4k^2+1+2.2k+4k^2(2k+1)^2
P=4k^2+4k^2+4k+4k^2.(4k^2+1+4k)+1
mà 4k^2+4k^2+4k+4k^2.(4k^2+1+4k) chia hết cho 2
=> P ko chia hết cho 2.
P là số chính fuong lẻ