Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét hai trường hợp
Nếu n chia hết cho 2 \(\Rightarrow n=2k\left(k\in n\right)\)
\(\Rightarrow\left(n+3\right)\left(n+6\right)=\left(2k+3\right)\left(2k+6\right)\)
\(=2k.2k+2k.6+3.2k+3.6\)
\(=2k^2+2k.6+2k.3+2.9\)
\(=2\left(k^2+6k+3k+9\right)⋮2\)
Nếu n chia cho 2 dư 1 \(\Rightarrow n=2k+1\)
\(\Rightarrow\left(2k+1+3\right)\left(2k+1+6\right)=\left(2k+4\right)\left(2k+7\right)\)
\(=2k.2k+2k.7+2k.4+4.7\)
\(=2k^2+2k.7+2k.4+2.14=2\left(k^2+7k+4k+14\right)⋮2\)
Vậy \(\left(n+3\right)\left(n+6\right)⋮2\left(n\in N\right)\)
Ta có \(\left(a+1\right)\left(a+2\right)...\left(a+a\right)⋮2\)và \(3^a\)là số lẻ nên Tử số là số lẻ.
Mẫu số là số chẵn. Do đó P không thể là một số tự nhiên với mọi a khác 0.
Xét ta có 2 trường hợp :
TH1 : Với k là số chẵn ( 2k với k thuộc N ) ta có :
2k .( 2k+5)
= 4 . k2 + 10 . k
= 2.(2 . k2 + 5k ) [ chia hết cho 2 ]
TH2 : Với k là số lẻ ( 2k + 1 với k thuộc N ) ta có :
( 2k + 1 ) . ( 2k + 1 + 5 )
= 2k . ( 2k + 6 ) + 2k + 6
= 4 k2 + 12k + 2k + 6
= 2 . ( 2 k2 + 6k + k + 3 ) [ chia hết cho 2 ]
Đặt \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)
\(=\left(n^2+3n\right)\left(n^2+2n+n+2\right)+1\)
Đặt \(n^2+3=t\)
=> \(A=t\left(t+2\right)+1\)
\(=t^2+2t+1\)
\(=\left(t+1\right)^2\)
=> A là số chính phương
Vậy với mọi số tự nhiên n thì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\) là số chính phương ( đpcm )
Vì n là STN => (n+2) và (n+3) là hai số tự nhiên liên tiếp => 1 trong hai số là số chẵn => tích (n+2)(n+3) là số chẵn
23 = 8; 102011 = 1000.000 (2011 chữ số 0)
=> 23 + 102011 = 100....08
Mà tổng số đó = 9 => số đó chia hết cho 9.. => a là số tự nhiên.