K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 5 2021

Bài 1:

Vì $a\geq 1$ nên:

\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)

\(\geq 1+\sqrt{4}+0=3\)

Ta có đpcm

Dấu "=" xảy ra khi $a=1$

 

AH
Akai Haruma
Giáo viên
29 tháng 5 2021

Bài 2:
ĐKXĐ: x\geq -3$

Xét hàm:

\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)

\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)

Do đó $f(x)$ đồng biến trên TXĐ

\(\Rightarrow f(x)=0\) có nghiệm duy nhất

Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.

29 tháng 3 2016

Nhận xét rằng \(\sqrt{5}-2=\left(\sqrt{5}-2\right)^{-1}\)

Do đó bất phương trình có thể viết thành :

\(\left(\sqrt{5}-2\right)^{x+1}\ge\left[\left(\left(\sqrt{5}-2\right)^{-1}\right)\right]^{x-3}=\left(\left(\sqrt{5}-2\right)^{3-x}\right)\)

\(\Leftrightarrow x+1\ge3-x\)

\(\Leftrightarrow x\ge1\)

Vậy tập nghiệm của phương trình là :

\(D\left(1;+\infty\right)\)

31 tháng 5 2016

 

Câu này mình sót +3x ở sau cùng vế phải. Không hiểu vì sao đánh rồi mà lại bị mất

14 tháng 5 2016

Vì \(a\ge1;b\ge1\) nên \(\ln a;\ln b\) và \(\ln\frac{a+b}{2}\) không âm. Ta có :

\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\ln\frac{a+b}{2}\ge\ln\sqrt{ab}\Leftrightarrow\ln\frac{a+b}{2}\ge\frac{1}{2}\left(\ln a+\ln b\right)\)  (1)

\(\ln a+\ln b\ge2\sqrt{\ln a.\ln b}\) Áp dụng BĐT Cauchy

\(\Rightarrow2\left(\ln a+\ln b\right)\ge\ln a+\ln b+2\sqrt{\ln a.\ln b}=\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

hay : 

     \(\ln a+\ln b\ge\frac{1}{2}\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)  (2)

Từ (1) và (2) \(\Rightarrow\ln\frac{a+b}{2}\ge\frac{1}{4}\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

hay \(\frac{\sqrt{\ln a}+\sqrt{\ln b}}{2}\le\sqrt{\ln\frac{a+b}{2}}\)