Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề dài v~
1.
a) \(f\left(x\right)=5x^2-2x+1\)
\(5f\left(x\right)=25x^2-10x+5\)
\(5f\left(x\right)=\left(25x^2-10x+1\right)+4\)
\(5f\left(x\right)=\left(5x-1\right)^2+4\)
Mà \(\left(5x-1\right)^2\ge0\)
\(\Rightarrow5f\left(x\right)\ge4\)
\(\Leftrightarrow f\left(x\right)\ge\frac{4}{5}\)
Dấu " = " xảy ra khi :
\(5x-1=0\Leftrightarrow x=\frac{1}{5}\)
Vậy ....
b) \(P\left(x\right)=3x^2+x+7\)
\(3P\left(x\right)=9x^2+3x+21\)
\(3P\left(x\right)=\left(9x^2+3x+\frac{1}{4}\right)+\frac{83}{4}\)
\(3P\left(x\right)=\left(3x+\frac{1}{2}\right)^2+\frac{83}{4}\)
Mà \(\left(3x+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow3P\left(x\right)\ge\frac{83}{4}\)
\(\Leftrightarrow P\left(x\right)\ge\frac{83}{12}\)
Dấu "=" xảy ra khi :
\(3x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{6}\)
Vậy ...
c) \(Q\left(x\right)=5x^2-3x-3\)
\(5Q\left(x\right)=25x^2-15x-15\)
\(\Leftrightarrow5Q\left(x\right)=\left(25x^2-15x+\frac{9}{4}\right)-\frac{69}{4}\)
\(\Leftrightarrow5Q\left(x\right)=\left(5x-\frac{3}{2}\right)^2-\frac{69}{4}\)
Mà \(\left(5x-\frac{3}{2}\right)^2\ge0\)
\(\Rightarrow5Q\left(x\right)\ge\frac{-69}{4}\)
\(\Leftrightarrow Q\left(x\right)\ge-\frac{69}{20}\)
Dấu "=" xảy ra khi :
\(5x-\frac{3}{2}=0\Leftrightarrow x=0,3\)
Vậy ...
2.
a) \(f\left(x\right)=-3x^2+x-2\)
\(-3f\left(x\right)=9x^2-3x+6\)
\(-3f\left(x\right)=\left(9x^2-3x+\frac{1}{4}\right)+\frac{23}{4}\)
\(-3f\left(x\right)=\left(3x-\frac{1}{2}\right)^2+\frac{23}{4}\)
Mà \(\left(3x-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow-3f\left(x\right)\ge\frac{23}{4}\)
\(\Leftrightarrow f\left(x\right)\le\frac{23}{12}\)
Dấu "=" xảy ra khi :
\(3x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{6}\)
Vậy ...
b) \(P\left(x\right)=-x^2-7x+1\)
\(-P\left(x\right)=x^2+7x-1\)
\(-P\left(x\right)=\left(x^2+7x+\frac{49}{4}\right)-\frac{53}{4}\)
\(-P\left(x\right)=\left(x+\frac{7}{2}\right)^2-\frac{53}{4}\)
Mà \(\left(x+\frac{7}{2}\right)^2\ge0\)
\(\Rightarrow-P\left(x\right)\ge-\frac{53}{4}\)
\(\Leftrightarrow P\left(x\right)\le\frac{53}{4}\)
Dấu "=" xảy ra khi :
\(x+\frac{7}{2}=0\Leftrightarrow x=-\frac{7}{2}\)
Vậy ...
c) \(Q\left(x\right)=-2x^2+x-8\)
\(-2Q\left(x\right)=4x^2-2x+16\)
\(-2Q\left(x\right)=\left(4x^2-2x+\frac{1}{4}\right)+\frac{63}{4}\)
\(-2Q\left(x\right)=\left(2x-\frac{1}{2}\right)^2+\frac{63}{4}\)
Mà : \(\left(2x-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow-2Q\left(x\right)\ge\frac{63}{4}\)
\(\Leftrightarrow Q\left(x\right)\le-\frac{63}{8}\)
Dấu "=" xảy ra khi :
\(2x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)
Vậy ...
2:
-8x^6-12x^4y-6x^2y^2-y^3
=-(8x^6+12x^4y+6x^2y^2+y^3)
=-(2x^2+y)^3
3:
=(1/3)^2-(2x-y)^2
=(1/3-2x+y)(1/3+2x-y)
\(3x\left(x+5\right)-\left(18+3x\right)\left(x-1\right)-1\)
\(=3x^2+15x-18x+18-3x^2+3x-1\)
\(=18-1\)
\(=17\)
\(\Rightarrow\)\(3x\left(x+5\right)-\left(18+3x\right)\left(x-1\right)-1\)không phụ thuộc vào biến
đpcm
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\Rightarrow\frac{x+y+z}{xyz}=0\Rightarrow x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)
\(N=\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=\frac{x^3+y^3+z^3}{xyz}=\frac{3xyz}{xyz}=3\)
Bài 3:
a) Ta có: \(x^2+3x+3\)
\(=x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{3}{4}\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(P=x^2+3x+3\) là \(\frac{3}{4}\) khi \(x=\frac{-3}{2}\)
b) Ta có: \(Q=x^2+2y^2+2xy-2y\)
\(=x^2+2xy+y^2+y^2-2y+1-1\)
\(=\left(x+y\right)^2+\left(y-1\right)^2-1\)
Ta có: \(\left(x+y\right)^2\ge0\forall x,y\)
\(\left(y-1\right)^2\ge0\forall y\)
Do đó: \(\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(Q=x^2+2y^2+2xy-2y\) là -1 khi x=-1 và y=1