\(AB< AC,\widehat{B}=60^0\)) . Hai tia phân giác AD 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2020

Bài 1: 

A B C I E D H

Vẽ \(IH\) là tia phân giác của \(\widehat{AIC}\)

Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}=180^0-60^0=120^0\)

Ta có: \(AD\) là tia phân giác của \(\widehat{A}\left(1\right)\)

Và: \(CE\) là tia phân giác của \(\widehat{C}\left(2\right)\) 

Từ   \(\left(1\right)\left(2\right)\Rightarrow\widehat{IAC}+\widehat{ICA}=\frac{120^0}{2}=60^0\)

Lại có: \(\widehat{EIA}=\widehat{IAC}+\widehat{ICA}=60^0=\widehat{AIH}\)

Xét \(\Delta EAI\) và \(\Delta HAI\) có:

\(\widehat{EAI}=\widehat{HAI}\left(AD-là-tia-p.giác-của\widehat{A}\right)\)

\(\widehat{AIE}=\widehat{AIH}\left(cmt\right)\)

\(AI\) chung

\(\Rightarrow\Delta AIE=\Delta AIH\left(g-c-g\right)\)

\(\Rightarrow IE=IH\left(1\right)\)

Chứng minh tương tự \(\Delta CHI=\Delta CDI\left(g-c-g\right)\Rightarrow ID=IH\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow IE=ID\)

\(\Rightarrow\Delta IDE\) cân tại \(I\left(đpcm\right)\)

21 tháng 1 2020

2. A B C H K D E

Trên cạnh BC lấy điểm E sao cho BE = BD => \(\Delta\)DBE cân tại B (1)

=> BD = BE 

Ta có: BD là phân giác ^ABC  => ^DBE = 40\(^{^o}\): 2 = 20\(^o\)(2)

(1) ; (2) => ^BDE = ^DED = ( 180\(^o\)- 20\(^o\)) : 2 = 80\(^o\)

=> ^DEC = 180\(^o\)- 80\(^o\)=100\(^o\)

Xét \(\Delta\)DEC có: ^EDC = 180\(^o\)- ^DEC - ^DCE = 180\(^o\)-100\(^o\)-40\(^o\)=40\(^o\)

=> \(\Delta\)DEC cân tại E => DE = EC (3)

Từ D kẻ vuông góc với BC tại H và BA tại K.

D thuộc đường phân giác ^ABC  ( theo t/c đường phân giác ) => DK = DH 

Vì ^BAC = ^DEC = 100\(^o\)=> ^KAD = ^HED 

=> \(\Delta\)KAD = \(\Delta\)HED ( cạnh góc vuông - góc nhọn )

=> DA = DE (4)

Từ (3) ; (4) => DA = EC 

Vậy BC = BE + EC = BD + AD

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

1 tháng 5 2018

A B C D H E x I

a) tam giác ABE có AI vừa là phân giác vừa là đường cao nên tam giác ABE cân tại A mà \(\widehat{A}=60^o\)

\(\Rightarrow\)tam giác ABE đều \(\Rightarrow\)AE = AB = BE

Nối DE

Chứng minh được : tam giác ADB = ADE ( c.g.c )

\(\Rightarrow\)DB = DE ; \(\widehat{ABD}=\widehat{AED}\)

Vẽ tia đối của BA là Bx 

Ta có : \(\widehat{xBD}+\widehat{DBA}=180^o\)

\(\widehat{AED}+\widehat{DEC}=180^o\)

Mà \(\widehat{xBD}=\widehat{A}+\widehat{C}\)\(\Rightarrow\)\(\widehat{xBD}>\widehat{C}\)

Từ đó suy ra : \(\widehat{DEC}>\widehat{C}\)\(\Rightarrow\)DC > DE

Mà DE = DB \(\Rightarrow\)DC > DB

3 tháng 2 2017

E C B A D I

A)Xét tam giác ADB và tam giác AEC có 

\(\widehat{AEC}=\widehat{ADB=90}^0\left(GT\right)\)

\(AB=AC\left(GT\right)\)

\(\widehat{A}chung\)

Từ ba điều trên => tam giác ABD= tam giác AEC( G.C.G)

=> BD=CE( 2 CẠNH T/Ư)

B) Xét tam giác AED, có: \(AE=AD\)(tam giác ADB= tam giác AEC)

=> Tam giác AED là tam giác cân 

C) câu c) mk chư bt lm 

18 tháng 2 2017

c ) +)Xét tam giác AEI và tam giác ADI có :

                 \(\widehat{E}=\widehat{D}\left(=90\right)^o\)

                  AE = AD ( cmt )

                  AI chung 

=> Tam giác AEI = Tam giác ADI ( ch - cgv)

=> Góc DAI = Góc EAI ( hai góc tương ứng ) 

Mà AI nằm giữa AB và AC nên AI là đường phân giác của góc BAC( ĐPCM )

+) Gọi điểm H là giao của BC và AI .

Xét tam giác ABC có :

       BD là đường cao thứ nhất

       CE là đường cao thứ hai 

=> AH phải là đường cao thứ ba (t/c đường cao trong tam giác )

=> \(Ah⊥BC\)

Mà I thuộc AH =>  \(AI⊥BC\)

17 tháng 4 2019

cho t.giác ABC vuông ở C, có \(\widehat{C}\)=60 độ là sao vậy bn,đã vuông thì pk = 90 độ chứ

21 tháng 1 2020

Câu hỏi của Phạm Thùy Dung - Toán lớp 7 - Học toán với OnlineMath