K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2017

A B C D F O E K I

a)

Xét tam giác ABF và tam giác ACB có:

BAC chung

ABF = ACB (gt)

=> Tam giác ABF ~ Tam giác ACB (g - g)

=> \(\dfrac{\text{AF}}{AB}=\dfrac{AB}{AC}\)

=> \(\dfrac{\text{AF}}{4}=\dfrac{4}{8}\)

=> AF = 2 (cm)

Ta có:

AF + FC = AC

2 + FC = 8

FC = 6 (cm)

b)

D là trung điểm của BC (AD là đường trung tuyến của tam giác ABC)

=> \(DC=\dfrac{1}{2}BC\)

Kẻ đường cao AH (H \(\in\) BC)

Ta có: \(\dfrac{S_{ABC}}{S_{ADC}}=\dfrac{\dfrac{1}{2}\times AH\times AB}{\dfrac{1}{2}\times AH\times DC}=\dfrac{AB}{\dfrac{1}{2}AB}=2\)

=> SABC = 2SADC

c)

Tam giác CKA có OF // KA (gt) nên theo định lý Talet

=> \(\dfrac{FC}{FA}=\dfrac{OC}{OK}\left(1\right)\)

Tam giác OCI có KA // CI (gt) nên theo hệ quả của định lý Talet

=> \(\dfrac{OC}{OK}=\dfrac{CI}{KA}\left(2\right)\)

(1) và (2)

=> \(\dfrac{FC}{FA}=\dfrac{CI}{KA}\)

d)

Tam giác DCI có CI // BO nên theo hệ quả của định lý Talet

=> \(\dfrac{DB}{DC}=\dfrac{BO}{CI}\)

Tam giác EBO có AK // BI nên theo hệ quả của định lý Talet

=> \(\dfrac{EA}{EB}=\dfrac{AK}{BO}\)

Ta có:

\(\dfrac{DB}{DC}\times\dfrac{EA}{EB}\times\dfrac{FC}{FA}=\dfrac{BO}{CI}\times\dfrac{AK}{BO}\times\dfrac{CI}{KA}=1\)

27 tháng 3 2017

ohhhhhh batngo

phải gọi là max dài luôn á

20 tháng 4 2018

hình bạn tự vẽ nhá

a) Xét tam giác BAH và tam giác ABC , có :

A^ = H^ = 90O

B^ : góc chung

=> tam giác HAB ~ tam giác ACB ( g.g)

b) ADĐL pitago vào tam giác vuông ABC , có :

AB2 + AC2 = BC2

=> 122 + 166 = BC2

=> BC2 = 400

=> BC = 20 cm

Vì tam giác ACB ~ tam giác HAB , nên ta có :

\(\dfrac{AH}{AC}\)= \(\dfrac{AB}{BC}\)

=> \(\dfrac{AH}{16}\)=\(\dfrac{12}{20}\)

=> AH = 9,6 cm

Ta có : AD là phân giác của A^

=> \(\dfrac{AB}{AC}\)= \(\dfrac{BD}{DC}\)

=> \(\dfrac{12}{16}\)=\(\dfrac{BD}{20-BD}\)

=> 16BD = 240 - 12BD

=> 28BD = 240

=> BD = 8,5 cm

5 tháng 3 2019

hình bạn tự vẽ ak nghen!!!

a)

Xét tam giác ABC và HBA có:

\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{BHA}=90^o\\chung\widehat{B}\end{matrix}\right.\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)

12 tháng 4 2018

B A C H

a) Xét\(\Delta HBA\)\(\Delta ABC\) có:

\(\widehat{A}=\widehat{H}=90^o\left(gt\right)\)

\(\widehat{B}\) chung

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(gg\right)\)

b) \(\Delta ABC\)\(\widehat{A}=90^o\left(gt\right)\)

\(\Rightarrow BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow BC^2=12^2+16^2\)

\(\Rightarrow BC^2=144+256\)

\(\Rightarrow BC^2=400\)

\(\Rightarrow BC=20\left(cm\right)\)

5 tháng 5 2018

b. Ta có: \(\Delta\)HBA \(\sim\)\(\Delta\)ABC ( cmt )

\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) \(\Leftrightarrow\dfrac{AH}{16}=\dfrac{12}{20}\Rightarrow AH=9,6\)

c. Xét \(\Delta\) ABC có: AD là đường phân giác ( gt )

\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}\) (1)

Xét \(\Delta\) ADB có: DE là đpg ( gt )

\(\Rightarrow\dfrac{EA}{EB}=\dfrac{DA}{DB}\)(2)

Xét \(\Delta\) ADC có: DF là đpg ( gt )

\(\Rightarrow\dfrac{FC}{FA}=\dfrac{DC}{DA}\)(3)

Từ 1,2 và 3 suy ra: \(\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=\dfrac{DA}{DB}.\dfrac{AB}{AC}.\dfrac{DC}{DA}\)

\(\Leftrightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=\dfrac{AB}{AC}.\dfrac{DC}{DB}\)

Mà: \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\) ( CM phần 1 )

\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=\dfrac{DB}{DC}.\dfrac{DC}{DB}\)

\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=1\)

Bạn tự vẽ hình nha : )

a: \(BC=\sqrt{13^2+20^2}=\sqrt{569}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{260\sqrt{569}}{569}\left(cm\right)\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

hay \(HD\cdot HC=AH^2\)

6 tháng 5 2020

Bạn còn cần giúp nx khôngg

12 tháng 5 2018

Tự kẽ hình nha :

a) Xét tam giác AHB và tam giác ABC có :

\(\widehat{A}\) = \(\widehat{H}\) = 900

\(\widehat{B}\) = góc chung

=.tam giác AHB ~ tam giác CAB ( g.g)

b) ADĐL pitago và tam giác vuông ABC , có :

AB2 + AC2 = BC2

122 + 162 = BC2

BC2 = 400

=> BC = 20 cm

Vì tam giác AHB ~ tam giác CAB ( câu a) , ta có :

\(\dfrac{AH}{AC}\)= \(\dfrac{AB}{BC}\)

=.> \(\dfrac{AH}{16}\)= \(\dfrac{12}{20}\)

=> AH = 9,6 cm

c)

Thay : \(\dfrac{EA}{EB}\)= \(\dfrac{DB}{DC}\)=\(\dfrac{FC}{FA}\)

Thành : \(\dfrac{AD}{DB}\)=\(\dfrac{DB}{BC}\)= \(\dfrac{BC}{AD}\)

Mà : \(\dfrac{AD}{DB}\)=\(\dfrac{DB}{BC}\)=\(\dfrac{BC}{AD}\)= 1

=> \(\dfrac{EA}{EB}\)=\(\dfrac{DB}{DC}\)=\(\dfrac{FC}{FA}\)= 1

30 tháng 4 2021

bạn giải ý c rõ hơn đc ko