Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D F O E K I
a)
Xét tam giác ABF và tam giác ACB có:
BAC chung
ABF = ACB (gt)
=> Tam giác ABF ~ Tam giác ACB (g - g)
=> \(\dfrac{\text{AF}}{AB}=\dfrac{AB}{AC}\)
=> \(\dfrac{\text{AF}}{4}=\dfrac{4}{8}\)
=> AF = 2 (cm)
Ta có:
AF + FC = AC
2 + FC = 8
FC = 6 (cm)
b)
D là trung điểm của BC (AD là đường trung tuyến của tam giác ABC)
=> \(DC=\dfrac{1}{2}BC\)
Kẻ đường cao AH (H \(\in\) BC)
Ta có: \(\dfrac{S_{ABC}}{S_{ADC}}=\dfrac{\dfrac{1}{2}\times AH\times AB}{\dfrac{1}{2}\times AH\times DC}=\dfrac{AB}{\dfrac{1}{2}AB}=2\)
=> SABC = 2SADC
c)
Tam giác CKA có OF // KA (gt) nên theo định lý Talet
=> \(\dfrac{FC}{FA}=\dfrac{OC}{OK}\left(1\right)\)
Tam giác OCI có KA // CI (gt) nên theo hệ quả của định lý Talet
=> \(\dfrac{OC}{OK}=\dfrac{CI}{KA}\left(2\right)\)
(1) và (2)
=> \(\dfrac{FC}{FA}=\dfrac{CI}{KA}\)
d)
Tam giác DCI có CI // BO nên theo hệ quả của định lý Talet
=> \(\dfrac{DB}{DC}=\dfrac{BO}{CI}\)
Tam giác EBO có AK // BI nên theo hệ quả của định lý Talet
=> \(\dfrac{EA}{EB}=\dfrac{AK}{BO}\)
Ta có:
\(\dfrac{DB}{DC}\times\dfrac{EA}{EB}\times\dfrac{FC}{FA}=\dfrac{BO}{CI}\times\dfrac{AK}{BO}\times\dfrac{CI}{KA}=1\)
hình bạn tự vẽ nhá
a) Xét tam giác BAH và tam giác ABC , có :
A^ = H^ = 90O
B^ : góc chung
=> tam giác HAB ~ tam giác ACB ( g.g)
b) ADĐL pitago vào tam giác vuông ABC , có :
AB2 + AC2 = BC2
=> 122 + 166 = BC2
=> BC2 = 400
=> BC = 20 cm
Vì tam giác ACB ~ tam giác HAB , nên ta có :
\(\dfrac{AH}{AC}\)= \(\dfrac{AB}{BC}\)
=> \(\dfrac{AH}{16}\)=\(\dfrac{12}{20}\)
=> AH = 9,6 cm
Ta có : AD là phân giác của A^
=> \(\dfrac{AB}{AC}\)= \(\dfrac{BD}{DC}\)
=> \(\dfrac{12}{16}\)=\(\dfrac{BD}{20-BD}\)
=> 16BD = 240 - 12BD
=> 28BD = 240
=> BD = 8,5 cm
hình bạn tự vẽ ak nghen!!!
a)
Xét tam giác ABC và HBA có:
\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{BHA}=90^o\\chung\widehat{B}\end{matrix}\right.\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)
B A C H
a) Xét\(\Delta HBA\) và\(\Delta ABC\) có:
\(\widehat{A}=\widehat{H}=90^o\left(gt\right)\)
\(\widehat{B}\) chung
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(gg\right)\)
b) \(\Delta ABC\) có \(\widehat{A}=90^o\left(gt\right)\)
\(\Rightarrow BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow BC^2=12^2+16^2\)
\(\Rightarrow BC^2=144+256\)
\(\Rightarrow BC^2=400\)
\(\Rightarrow BC=20\left(cm\right)\)
b. Ta có: \(\Delta\)HBA \(\sim\)\(\Delta\)ABC ( cmt )
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) \(\Leftrightarrow\dfrac{AH}{16}=\dfrac{12}{20}\Rightarrow AH=9,6\)
c. Xét \(\Delta\) ABC có: AD là đường phân giác ( gt )
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}\) (1)
Xét \(\Delta\) ADB có: DE là đpg ( gt )
\(\Rightarrow\dfrac{EA}{EB}=\dfrac{DA}{DB}\)(2)
Xét \(\Delta\) ADC có: DF là đpg ( gt )
\(\Rightarrow\dfrac{FC}{FA}=\dfrac{DC}{DA}\)(3)
Từ 1,2 và 3 suy ra: \(\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=\dfrac{DA}{DB}.\dfrac{AB}{AC}.\dfrac{DC}{DA}\)
\(\Leftrightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=\dfrac{AB}{AC}.\dfrac{DC}{DB}\)
Mà: \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\) ( CM phần 1 )
\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=\dfrac{DB}{DC}.\dfrac{DC}{DB}\)
\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=1\)
Bạn tự vẽ hình nha : )
a: \(BC=\sqrt{13^2+20^2}=\sqrt{569}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{260\sqrt{569}}{569}\left(cm\right)\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
hay \(HD\cdot HC=AH^2\)
Tự kẽ hình nha :
a) Xét tam giác AHB và tam giác ABC có :
\(\widehat{A}\) = \(\widehat{H}\) = 900
\(\widehat{B}\) = góc chung
=.tam giác AHB ~ tam giác CAB ( g.g)
b) ADĐL pitago và tam giác vuông ABC , có :
AB2 + AC2 = BC2
122 + 162 = BC2
BC2 = 400
=> BC = 20 cm
Vì tam giác AHB ~ tam giác CAB ( câu a) , ta có :
\(\dfrac{AH}{AC}\)= \(\dfrac{AB}{BC}\)
=.> \(\dfrac{AH}{16}\)= \(\dfrac{12}{20}\)
=> AH = 9,6 cm
c)
Thay : \(\dfrac{EA}{EB}\)= \(\dfrac{DB}{DC}\)=\(\dfrac{FC}{FA}\)
Thành : \(\dfrac{AD}{DB}\)=\(\dfrac{DB}{BC}\)= \(\dfrac{BC}{AD}\)
Mà : \(\dfrac{AD}{DB}\)=\(\dfrac{DB}{BC}\)=\(\dfrac{BC}{AD}\)= 1
=> \(\dfrac{EA}{EB}\)=\(\dfrac{DB}{DC}\)=\(\dfrac{FC}{FA}\)= 1