Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) cho 2005 số đó là 2006!+2,2006!+3,2006!+4,...,2006!+2006
Ta thấy 2006!+2 chia hết cho 2
2006!+3 chia hết cho 3
2006!+4 chia hết cho 4
.....................................
2006!+2006 chia hết cho 2006
Vậy cả 2005 số trên đều là hợp số
-> điều phải chứng minh
Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 7 - Học toán với OnlineMath
a, A= 10^2015+8/9
=1000...08/9 ( 2015 chữ số 0)
Tử có tổng các chữ số bằng 1+8=9 chia hết cho 9
<=>A là 1 số tự nhiên
Gọi 30 số đó là a1; a2; a3;...;a30
Vì ƯCLN(a1; a2;...;a30) là d
=> đặt a1 = d.b1
đặt a2 = d.b2
...
đặt a3 = d.b3
=> d.b1 + d.b2 +...+ d.b30 = 1994
=> d(b1 + b2 +...+ b30) = 1994
=> 1994 chia hết cho d
=> d thuộc {1; 2; 997; 1994) (Vì d thuộc N*) (1)
Mà b1; b2;...;b30 thuộc N* => b1 + b2 +...+ b30 > 30
=> d < 1994/30 => d < 66 (2)
Từ (1) và (2) => d thuộc {1; 2}
Mà d là lớn nhất => d = 2
Vậy d = 2
Câu này có trong câu hỏi tương tự bạn chịu khó tìm bạn nhé :))
Đặt
X
=
a
+
1
b
+
b
+
1
a
=
a
2
+
b
2
+
a
+
b
a
b
Vì X là số tự nhiên =>
a
2
+
b
2
+
a
+
b
⋮
a
b
Vì d=UCLN(a,b) =>
a
⋮
d
và
b
⋮
d
=>
a
b
⋮
d
2
=>
a
2
+
b
2
+
a
+
b
⋮
d
2
Lại vì
a
⋮
d
và
b
⋮
d
=>
a
2
⋮
d
2
và
b
2
⋮
d
2
=>
a
2
+
b
2
⋮
d
2
=>
a
+
b
⋮
d
2
=>
a
+
b
≥
d
2
(đpcm)
Ta có:
\(S=1+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{2001!}\)
\(=2+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}\)
Ta lại có:
\(\frac{1}{2!}=\frac{1}{1.2}\)
\(\frac{1}{3!}<\frac{1}{2.3}\)
\(...\)
\(\frac{1}{2001!}<\frac{1}{2000.2001}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2000.2001}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2000}-\frac{1}{2001}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1-\frac{1}{2001}=\frac{2000}{2001}<1\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1\)
\(\Rightarrow\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}\right)+2<1+2\)
\(\Rightarrow1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<3\)
Cho mình hỏi mấy câu nữa:
Câu 1: Cho 1994 số, mỗi số bằng 1 hoặc -1. Hỏi có thể chọn ra từ 1994 số đó một số số sao cho tổng các số được chọn ra bằng tổng các số còn lại hay không?
Câu 2: So sánh
a) (-2)^91 và (-5)^35
b) (-5)^91 và (-11)^59
c) (-80)^11 và (-27)^15
d) (-31)^10 và (-17)^13
Câu 3: Cho tổng: 1+2+3+....+10. Xóa hai số bất kì, thay bằng hiệu của chúng. Cứ tiếp tục làm như vậy nhiều lần. Có khi nào kết quả nhận được bằng -1; bằng -2; bằng 0 được không?