Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khoảng thời gian để \(W_C=W_L\) giữa hai lần liên tiếp là \(\frac{T}{4}s\)
\(=> \frac{T}{4}=10^{-6}s=> T= 4.10^{-6}s.\)
\(W=\frac{1}{2}CU_0^2=> C = 1,25.10^{-7}F. \)
\(T=2\pi \sqrt{LC}=> L = \frac{T^2}{4\pi^2 C}=3,2.10^{-6}H.\)
\(W=\frac{1}{2}LI_0^2=> I_0=0,79A.\)
\(\dfrac{W_a}{W_b}=\dfrac{\dfrac{1}{2}m.v_1max^2}{\dfrac{1}{2}m.v_2max^2}=\dfrac{g.l_1.\alpha o1^2}{g.l_2.\alpha o^2}\)
dao động nhỏ nên anpha xấp xỉ sin anpha
B là 2
A là 1
tỉ số cơ năng là....
c.
\(\dfrac{1}{T^2}=\dfrac{1}{T_{1^{ }}^2}+\dfrac{1}{T_2^2}\)
=> T=0,24s
Chú ý trong mạch dao động \(i_1\perp u_1;i_2\perp u_2\)
Mặt khác ta có độ lệch pha giữa hai \(i_1;i_2\):\(t_2-t_1=\frac{\pi}{2}\sqrt{LC}=\frac{T}{4}\Rightarrow\Delta\varphi=\frac{T}{4}.\frac{2\pi}{T}=\frac{\pi}{2}\)
=> \(i_1\perp i_2\)
i i u u 1 1 2 2
Nhìn vào đường tròn ta thấy \(i_1\perp i_2,u_1\perp u_2\); \(i_1\) ngược pha \(u_2\) và ngược lại.
\(\frac{i_1^2}{I^2_0}+\frac{u^2_1}{U_0^2}=1;\frac{i_1^2}{I^2_0}+\frac{i^2_2}{I_0^2}=1;\frac{i_1^2}{I^2_0}+\frac{u^2_2}{U_0^2}=1;\frac{i_2^2}{I^2_0}+\frac{u^2_1}{U_0^2}=1;\)
\(U_0=\frac{I_0}{\omega}\Rightarrow I_0=\omega\sqrt{U_0}=\frac{1}{\sqrt{LC}}\sqrt{U_0}\)
Dựa vào các phương trình trên ta thấy chỉ có đáp án D là sai.
Xem t = 0 là lúc cả hai mạch bắt đầu dao động
Phương trình hiệu điện thế trên 2 tụ C1 và C2 lần lượt có dạng
\(\begin{cases}u_1=12cos\left(\omega t\right)\left(V\right)\\u_2=6cos\left(\omega t\right)\left(V\right)\end{cases}\)
Độ chênh lệch Hiệu điện thế: \(\Delta u=u_1-u_2=6cos\left(\omega t\right)\left(V\right)\)
\(u_1-u_2=6cos\left(\omega t\right)=\pm3\Rightarrow cos\left(\omega t\right)=\pm0,5\Rightarrow cos\left(\frac{2\pi}{T}t\right)=\pm0,5\)
\(\Rightarrow\Delta t_{min}=\frac{T}{6}=\frac{10^{-6}}{3}s\)