Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D
co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)
ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)
suy ra \(\Delta CED\) deu => EC=CD (1)
mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)
=> tam giac CDF can tai C
suy ra CD=CF (2)
tu (1),(2) suy ra dpcm
DC = DA
OA = OC
Do đó OD là trung trực của đoạn thẳng AC : suy ra OD vuông góc với AC
Tứ giác OECH có góc CEO + góc CHO = 180 độ
Suy ra tứ giác OECH là tứ giác nội tiếp
Câu a dễ nha: tứ giác BCDO có DOB+DCB=90+90=180(mà 2 góc ở vị trí đối nhau )
nên BCDO nội tiếp
câu b) tam giác ADO và tam giác ABC có:
góc BAC chung
AOD=ACB=90
câu c: CB là dây cung mà OE là đường thẳng đi qua bán kính nên OE vuông góc với BC
nên OE// DC hay AD//OE mà DE//AO nên OEDA là hình bình hành
câu d thì mk chưa nghĩ ra hihi thông cảm nha
ở câu c nếu chỉ có BC là dây và OE là đường thẳng đi qua bán kính thì BC chưa thể vuông góc với OE được bạn nhé mà cần phải OE đi qua trung điểm của BC nữa