Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì BD là phân giác của \(\widehat{ABC}\) nên \(\widehat{ABD}=\widehat{DBC}=\frac{1}{2}\widehat{ABC}\)
Lại có \(\widehat{EBD}=\widehat{EDB}\)(gt)
=> \(\widehat{EDB}=\widehat{DBC}\)
Mà 2 góc ở vị trí so le trong nên ED//BC
Chúc bạn làm bài tốt!!!!
b) Vì ED//BC nên \(\widehat{AED}=\widehat{ABC}\)(đồng vị) (1)
Vì EF//BD nên \(\widehat{AEF}=\widehat{ABD}\)(đồng vị) (2)
Lại có \(\widehat{ABD}=\frac{1}{2}\widehat{ABC}\)(cmt) (3)
Từ (1),(2) và (3) suy ra \(\widehat{AEF}=\frac{1}{2}\widehat{AED}\)
=> EF là tia phân giác của góc AED
Chúc bạn làm bài tốt !!!!!!!!!!
d, Ta có : ME là tia phân giác ngoài của góc MFC => \(\dfrac{MF}{MC}=\dfrac{ÈF}{FC}\left(2\right)\)
MK là tia phân giác trong của góc MFC =>\(\dfrac{FK}{KC}=\dfrac{MF}{MC}\left(2\right)\)
Từ (1) và 2) suy ra : \(\dfrac{EF}{FC}=\dfrac{FK}{KC}\Rightarrow EF.KC=FK.EC\)
A B C F D E G
Theo giả thiết ta có AD=DF=FB.
Có nghĩa là: D là trung điểm của AF, F là trung điểm của DB
Xét tam giác AFG, ta có:
- D là trung điểm của AF
- Mà DE // FG
\(\Rightarrow\)DE là đường trung bình, Vậy E là trung điểm
Xét hình thangDECB, ta có:
- F là trung điểm của DB
- FG // BC
=> G là trung điểm
=> GE =GC
Mà EG=GA (cmt)
=> GE=GC=GA
Tam giác AFG có DE là đường trung bình
=>DE=\(\frac{1}{2}\)FG
Ta có FG là đường trung bình cua hình thang DECB
=>FG = \(\frac{DE+BC}{2}\)
Ta phải chứng minh DE+FG=BC
\(\frac{1}{2}\)FG + \(\frac{DE+BC}{2}\) = BC
\(\frac{1}{2}\)(FG+DE+BC)=BC
FG+DE+BC= 2BC
FG+DE = 2BC - BC
FG+DE = BC
b) ta có FG= \(\frac{DE+BC}{2}\)
2FG= \(\frac{1}{2}\)FG +9
2FG - \(\frac{1}{2}\)FG = 9
\(\frac{3}{2}\)FG =9
=> FG=9:\(\frac{3}{2}\)
FG=6cm
mà FG=2DE
=>DE= \(\frac{FG}{2}\)=\(\frac{6}{2}\)=3cm
1,