Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a
Gọi H là chân đường vuông góc hạ từ M xuống tia phân giác ^BAC. Tam giác ADE có AH vừa là phân giác vùa là đường cao nên cân tại A.
Qua B vẽ BF//CE (F thuộc DE) => tam giác BDF cân tại B => BD = BF (1)
Mặt khác xét 2 tam giác BMF và CME có : BM = CM; ^BMF = ^CME ( đối đỉnh); ^MBF = ^MCE ( so le trong) => tam giác BMF = tg CME => BF = CE (2)
Từ (1) và (2) => đpcm
mấy câu còn lại bó tay
a) Do C thuộc nửa đường tròn nên \(\widehat{ACB}=90^o\) hay AC vuông góc MB.
Xét tam giác vuông AMB có đường cao AC nên áp dụng hệ thức lượng ta có:
\(BC.BM=AB^2=4R^2\)
b) Xét tam giác MAC vuông tại C có CI là trung tuyến ứng với cạnh huyền nên IM = IC = IA
Vậy thì \(\Delta ICO=\Delta IAO\left(c-c-c\right)\)
\(\Rightarrow\widehat{ICO}=\widehat{IAO}=90^o\)
Hay IC là tiếp tuyến tại C của nửa đường tròn.
c) Xét tam giác vuông AMB có đường cao AC, áp dụng hệ thức lượng ta có:
\(MB.MC=MA^2=4IC^2\Rightarrow IC^2=\frac{1}{4}MB.MC\)
Xét tam giác AMB có I là trung điểm AM, O là trung điểm AB nên IO là đường trung bình tam giác ABM.
Vậy thì \(MB=2OI\Rightarrow MB^2=4OI^2\) (1)
Xét tam giác vuông MAB, theo Pi-ta-go ta có:
\(MB^2=MA^2+AB^2=MA^2+4R^2\) (2)
Từ (1) và (2) suy ra \(4OI^2=MA^2+4R^2.\)
d) Do IA, IC là các tiếp tuyến cắt nhau nên ta có ngay \(AC\perp IO\Rightarrow\widehat{CDO}=90^o\)
Tương tự \(\widehat{CEO}=90^o\)
Xét tứ giác CDOE có \(\widehat{CEO}=\widehat{CDO}=90^o\)mà đỉnh E và D đối nhau nên tứ giác CDOE nội tiếp đường tròn đường kính CO.
Xét tứ giác CDHO có: \(\widehat{CHO}=\widehat{CDO}=90^o\) mà đỉnh H và D kề nhau nên CDHO nội tiếp đường tròn đường kính CO.
Vậy nên C, D, H , O, E cùng thuộc đường tròn đường kính CO.
Nói cách khác, O luôn thuộc đường tròn ngoại tiếp tam giác HDE.
Vậy đường tròn ngoại tiếp tam giác HDE luôn đi qua điểm O cố định.
2) Em nhầm đề ca/b+1
Ta có:
VT = \(\frac{ab}{c+a+b+c}+\frac{bc}{a+a+b+c}+\frac{ac}{b+a+b+c}\)
=\(\frac{ab}{\left(a+c\right)+\left(b+c\right)}+\frac{bc}{\left(a+b\right)+\left(a+c\right)}+\frac{ac}{\left(a+b\right)\left(b+c\right)}\)
=\(\frac{ab}{4}.\frac{4}{\left(a+c\right)+\left(b+c\right)}+\frac{bc}{4}.\frac{4}{\left(a+b\right)+\left(a+c\right)}+\frac{ac}{4}.\frac{4}{\left(a+b\right)+\left(b+c\right)}\)
\(\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)+\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{ac}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)
=\(\frac{1}{4}\left[\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\left(\frac{ab}{b+c}+\frac{ac}{b+c}\right)+\left(\frac{bc}{a+b}+\frac{ac}{a+b}\right)\right]\)
\(=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)
Dấu "=" xảy ra <=> a= b = c =1/3