K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

a, Chú ý:  A M O ^ = A I O ^ = A N O ^ = 90 0

b,  A M B ^ = M C B ^ = 1 2 s đ M B ⏜

=> DAMB ~ DACM (g.g)

=> Đpcm

c, AMIN nội tiếp => A M N ^ = A I N ^

BE//AM => A M N ^ = B E N ^

=>   B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp =>  B I E ^ = B N M ^

Chứng minh được:  B I E ^ = B C M ^ => IE//CM

d, G là trọng tâm DMBC Þ G Î MI

Gọi K là trung điểm AO Þ MK = IK = 1 2 AO

Từ G kẻ GG'//IK (G' Î MK)

=>  G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O  không đổi   (1)

MG' =  2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)

5 tháng 4 2020

Đáp án:

Giải thích các bước giải:

 Gọi G là trọng tâm của tgMBC => G trên MI và MG/IM = 2/3

Trên MN lấy điểm K sao cho MK/MN = 2/3 => Điểm K cố định và KG // NI vì MG/MI = MK/MN =2/3

=> ^MGK = ^MIN mà ^MIN không đổi (góc nội tiếp của đường tròn đk AO qua 5 điểm câu a)

=> G thuộc cung tròn cố định chứa ^MGK không đổi  nhận MK là dây

Học tốt

22 tháng 3 2021

Xét $(O)$ có: $BC$ là dây cung
$I$ là trung điểm $BC$

$⇒OI ⊥BC$ (tính chất)

Xét $(O)$ có: $AM;AN$ là các tiếp tuyến của đường tròn

$⇒AM⊥OM;AN⊥ON;AM=AN$

Xét tứ giác $AMON$ có:

$\widehat{AMO}=\widehat{ANO}=90^o$

$⇒\widehat{AMO}+\widehat{ANO}=180^o$

$⇒$ Tứ giác $AMON$ nội tiếp (tổng 2 góc đối $=180^o$)

$⇒$ 4 điểm $A;M;O;N$ thuộc 1 đường tròn(1)

Lại có: $\widehat{AIO}=\widehat{ANO}=90^o$

$⇒\widehat{AIO}+\widehat{ANO}=180^o$

$⇒$ Tứ giác $AION$ nội tiếp (Tổng 2 góc đối $=180^o$)

hay 4 điểm $A;I;O;N$ thuộc 1 đường tròn (2)

Từ $(1)(2)⇒$ 5 điểm $A;I;O;M;N$ thuộc 1 đường tròn (đpcm)

b, $K$ sẽ là giao điểm của $MN$ và $AC$

5 điểm $A;I;O;M;N$ thuộc 1 đường tròn

$⇒$ Tứ giác $AMIN$ nội tiếp

$⇒\widehat{AIM}=\widehat{ANM}$ (các góc nội tiếp cùng chắn cung $AM$)

Ta có: $AM=AN⇒\triangle AMN$ cân tại $A$

$⇒\widehat{AMN}=\widehat{ANM}$

$⇒\widehat{AIM}=\widehat{AMN}$

hay $\widehat{AIM}=\widehat{AMK}$

Xét $\triangle AIM$ và $\triangle AMK$ có:

$\widehat{AIM}=\widehat{AMK}$

$\widehat{A}$ chung

$⇒\triangle AIM \backsim \triangle AMK(c.g.c)$

$⇒\dfrac{AI}{AM}=\widehat{AM}{AK}$

$ ⇒AK.AI=AM^2(3)$

Xét $(O)$ có: $\widehat{AMB}=\widehat{ACM}$ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung $MB$)

Xét $\triangle AMB$ và $\triangle ACM$ có:

$\widehat{AMB}=\widehat{ACM}$ 

$\widehat{A}$ chung

$⇒\triangle AMB \backsim \triangle ACM(g.g)$

$⇒\dfrac{AM}{AC}=\dfrac{AB}{AM}$

Hay $AB.AC=AM^2(4)$ 

Từ $(3)(4)⇒AK.AI=AB.AC(đpcm)$

undefined

22 tháng 3 2021

GIÚP MÌNH VỚI

 

 

3 tháng 4 2016

Ta có : góc AMO = góc ANO = 900 (t/c tiếp tuyến) 

Mặt khác I là tđ BC => OI vuông góc BC (t/c đường kính và dây) => góc AIO = 900

=> 5 điểm A, M, O, I, N cùng nằm trên một đường tròn

Ta có góc MAI = góc MNI (AMIN nt), mà góc EBI = góc MAI (đồng vị, do AM // BE) => góc MNI = góc EBI hay góc ENI = góc EBI

=> Tứ giác NBEI nội tiếp => góc BNE = góc BIE. Mà góc BNE = góc BCM (cùng chắn cung MB trong (O)) 

=> góc BIE = góc BCM => IE // CM 

1 tháng 8 2020

Violympic toán 9

a/ Xét tứ giác \(AMON\) có :

\(\widehat{AMO}=\widehat{ANO}=90^0\)

\(\Leftrightarrow\widehat{AMO}+\widehat{ANO}=180^0\)

\(\widehat{AMO};\widehat{ANO}\) là 2 góc đối diện

\(\Leftrightarrow\) Tứ giác AMON là tứ giác nội tiếp

\(\Leftrightarrow\) 4 điểm A, M, O, N cùng thuộc 1 đường tròn \(\left(1\right)\)

Xét (O, R) có :

I là trung điểm của dây cung BC

\(\Leftrightarrow OI\perp BC\)

Xét tam giác OIA có : \(\widehat{OIA}=90^0\)

\(\Leftrightarrow\) 3 điểm O, I, A cùng thuộc 1 đường tròn \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\) 5 điểm \(A,M,O,I,N\) cùng thuộc 1 đường tròn

b/ Ta có :

\(\widehat{BMA}=\widehat{MCA}\) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung)

Xét \(\Delta MBA;\Delta CMA\) có :

\(\left\{{}\begin{matrix}\widehat{CAM}chung\\\widehat{BMA}=\widehat{MCA}\end{matrix}\right.\)

\(\Leftrightarrow\Delta MBA\infty\Delta CMA\left(\left(g.g\right)\right)\)

\(\Leftrightarrow\frac{AB}{AM}=\frac{AM}{AC}\Leftrightarrow AB.AC=AM^2\left(đpcm\right)\)

c/ Ta có :

\(BE\backslash\backslash AM\)

\(\Leftrightarrow\widehat{MAB}=\widehat{EBI}\)

Lại có : \(\widehat{MAB}=\widehat{MNB}\)

\(\Leftrightarrow\widehat{MNB}=\widehat{EBI}\)

\(\Leftrightarrow MNIE\) là tứ giác nội tiếp

\(\Leftrightarrow\widehat{EIB}=\widehat{ENB}\)

\(\widehat{ENB}=\widehat{MCB}\)

\(\Leftrightarrow\widehat{EIB}=\widehat{MCB}\)

Mà đây là 2 góc đồng vị

\(\Leftrightarrow IE\backslash\backslash MC\left(đpcm\right)\)

1 tháng 8 2020

vẽ hình đi b