K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3:

\(C=\left(\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right)\)

\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}\)

\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3x\left(x+3\right)}{-\left(x^2-3x+9\right)}\)

\(=\dfrac{-3}{x-3}\)

1) cho phân thức: A=\(\frac{x-3}{7x^2+7x}\) a/ tìm giá trị của x để phân thức trên được xác địnhb/ tìm x để phân thức A có giá trị bằng 02) cho tam giác ABC vuông tại A, đường trung tuyến AM. gọi P là trung điểm của AB, Q là điểm đối xứng với M qua Pa) chứng minh : trứ giác AQBM là hình thoib) tính diện tích tam giác ABC, biết AB =10cm, AC=6cmc) tam giác BC cần điều kiện gì thì tứ giác AQBM là hình...
Đọc tiếp

1) cho phân thức: A=\(\frac{x-3}{7x^2+7x}\) 

a/ tìm giá trị của x để phân thức trên được xác định

b/ tìm x để phân thức A có giá trị bằng 0

2) cho tam giác ABC vuông tại A, đường trung tuyến AM. gọi P là trung điểm của AB, Q là điểm đối xứng với M qua P

a) chứng minh : trứ giác AQBM là hình thoi

b) tính diện tích tam giác ABC, biết AB =10cm, AC=6cm

c) tam giác BC cần điều kiện gì thì tứ giác AQBM là hình vuông

3) phân tích đa thức thành nhân tử 

a/ \(2x^3-12x^2+18x\)

b/\(16y^2-4x^2-12x-9\)

4) rút gọn các phân thức sau

a/\(\left(x-5\right)\left(x^2+26\right)+\left(5-x\right)\left(1-5x\right)\)

b/\(\left(\frac{2}{x-1}-\frac{1}{x+1}\right)\frac{x^2-1}{x^2+6x+9}+\frac{x+1}{2x+6}\)

5) cho biều thức P=\(\frac{8x^3-12x^2+x-1}{4x^2-4x+1}\)

a/ tìm điều kiện xác định của x để giá trị của phân thức2 được xác định

b/ tìm giá trị của x để giá trị của phân thức bằng 0

6/  tìm a để đa thức \(x^3-7x-x^2+a\)chia hết cho đa thức x-3

7/  cho tam giác ABC cân tại A, đường cao AM, gọi I là trung điềm AC, K là điểm đối xứng của Mqua I

a/ chứng minh rằng: tứ giác AMCK là hình chữ nhật 

b/ tìm điều kiện của tam giác ABC để tứ giác AKCM là hình vuông

c/ SO sánh diện tích tam giác ABC với diện tích tứ giác AKCM

3
31 tháng 12 2017

Bài 1:

a) Để giá trị của phân thức A được xác định <=> \(7x^2+7x\ne0\) <=>  \(7x.\left(x+1\right)\ne0\)<=> \(x\ne0\)và \(x\ne-1\)

=> Để giá trị của phân thức A được xác định thì x phải khác -1 và 0.

b) Để phân thức A = 0 => x - 3 = 0 => x = 3 (thỏa mãn đkxd)

=> Để giá trị phân thức A = 0 thì x = 3

31 tháng 12 2017

Bạn viết z chắc mỏi tay lắm. Mik sẽ giải cho bạn b3 nhé

a) \(2x^3-12x^2+18x=2x.\left(x^2-6x+9\right)=2x.\left(x-3\right)^2\)

b) \(16y^2-4x^2-12x-9=16y^2-\left(4x^2+12x+9\right)=16y^2-\left(2x+3\right)^2\)

\(=\left(4y+2x+3\right).\left(4y-2x-3\right)\)

26 tháng 12 2018

\(\left(5x-4\right)\left(2x+3\right)=10x^2+15x-8x-12=10x^2+7x-12\)

\(b,\frac{x-4}{x-2}+\frac{5x-8}{x-2}=\frac{x-4+5x-8}{x-2}=\frac{6\left(x-2\right)}{x-2}=6\)

\(c,\frac{x-9}{x^2-9}-\frac{3}{x^2+3x}=\frac{x-9}{\left(x+3\right)\left(x-3\right)}-\frac{3}{x\left(x+3\right)}\)

\(=\frac{x^2-9x}{x\left(x+3\right)\left(x-3\right)}-\frac{3x-9}{x\left(x+3\right)\left(x-3\right)}=\frac{x^2-9x-3x+9}{x\left(x+3\right)\left(x-3\right)}=\frac{x^2-6x+9}{x\left(x+3\right)\left(x-3\right)}\)

\(=\frac{x-3}{x\left(x+3\right)}\)

26 tháng 12 2018

    CÂU 1 :

 a, ( 5x-4 ) ( 2x + 3 )

=  10x + 15x -8x -12

= 17x - 12 

 b, \(\frac{x-4}{x-2}\)\(\frac{5x-8}{x-2}\)

\(\frac{x-4+5x-8}{x-2}\)

\(\frac{6x-12}{x-2}\)

\(\frac{6\left(x-2\right)}{x-2}\)

= 6

 c, \(\frac{x-9}{x^2-9}\)\(\frac{3}{x^2+3x}\)

\(\frac{x-9}{\left(x-3\right)\left(x+3\right)}\)\(\frac{3}{x\left(x+3\right)}\)

\(\frac{\left(x-9\right).x}{x\left(x-3\right).\left(x+3\right)}\)\(\frac{3.\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}\)

\(\frac{x^2-9x}{x\left(x-3\right)\left(x+3\right)}\)\(\frac{3x-9}{x\left(x-3\right)\left(x+3\right)}\)

\(\frac{x^2-9x-3x+9}{x\left(x-3\right)\left(x+3\right)}\)

\(\frac{x^2-12x+9}{x\left(x-3\right)\left(x+3\right)}\)

Trắc Nghiệm:Câu 1: tam giác ABC vuông tại A có AB = 5 cm AC = 12 cm thì diện tích của tam giác ABC bằng:A.120cm2      B.17cm2      C.60cm2      D.30cm2Câu 2: Điều kiện để cho biểu thức \(\frac{2}{x-1}\)trở thành một phân thức khi:A.\(\frac{9-x^2}{x+1}\)B.\(\frac{x+1}{x^2-9}\)C.\(\frac{x-1}{x^2-9}\)D.\(\frac{x^2+9}{x+1}\)Tự luận:Câu 1 Cho phân thức \(\frac{3x+3}{x^2-1}\)a) Tìm điều kiện của x đề giá trị của phân...
Đọc tiếp

Trắc Nghiệm:

Câu 1: tam giác ABC vuông tại A có AB = 5 cm AC = 12 cm thì diện tích của tam giác ABC bằng:

A.120cm2      B.17cm2      C.60cm2      D.30cm2

Câu 2: Điều kiện để cho biểu thức \(\frac{2}{x-1}\)trở thành một phân thức khi:

A.\(\frac{9-x^2}{x+1}\)B.\(\frac{x+1}{x^2-9}\)C.\(\frac{x-1}{x^2-9}\)D.\(\frac{x^2+9}{x+1}\)

Tự luận:

Câu 1 Cho phân thức \(\frac{3x+3}{x^2-1}\)

a) Tìm điều kiện của x đề giá trị của phân thức được xác định. Tìm giá trị của x để phân thức có gía trị bằng -2.

b) Tìm giá trị của x để phân thức có giá trị là số nguyên.

Câu 2: Cho tam giác ABC. Gọi D,M,E theo thứ tự là trung điểm của AB,BC,CA.

b) Tam giác ABC có điều kiện gì thì tứ giác ADME là hình chữ nhật?

c) Nếu M di chuyển trên cạnh BC thì trung điểm của AM di chuyển trên đường nào?

 

Giải hộ mk vs !!! Mk cần gấp lắm...

1
28 tháng 12 2018

bài 1 ( tự luận ) 

a, Để \(\frac{3x+3}{x^2-1}\)Xác định 

\(\Rightarrow\orbr{\begin{cases}x+1\ne0\\x-1\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne-1\\x\ne1\end{cases}}\)

\(\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{3}{x-1}\)

Thay \(\frac{3}{x-1}=2\)......

\(c,\)Để \(\frac{3}{x-1}\)nguyên

\(\Rightarrow3⋮x-1\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(x-1=1\Rightarrow x=2\)

\(x-1=-1\Rightarrow x=0\)

\(x-1=3\Rightarrow x=4\)

\(x-1=-3\Rightarrow x=-2\)

\(KL:x\in\left\{0;4;\pm2\right\}\)

3 tháng 12 2018

bài 2

a,6xz+9yz/4y^2

Bài 1 Cho biểu thức A = \(\frac{5}{x+3}\)- \(\frac{2}{3-x}\)- \(\frac{3x^{2^{ }}-2x-9}{x^2-9}\)( Với x \(\ne\)- 3 và x\(\ne\)3)a) Rút gon biểu thức Ab) Tính giá trị cua A khi\(|x-2=1|\)c) Tìm giá trị nguyên của x để A có giá trị nguyênBài 2Cho tam giác ABC vuông tại A , gọi m là trung trung điểm của AC . Gọi D là điểm đối xứng với B qua Ma) Chứng minh tứ giác ABCD là hình bình hành b) Gọi N là điểm đối xứng...
Đọc tiếp

Bài 1 

Cho biểu thức A = \(\frac{5}{x+3}\)\(\frac{2}{3-x}\)\(\frac{3x^{2^{ }}-2x-9}{x^2-9}\)( Với x \(\ne\)- 3 và x\(\ne\)3)

a) Rút gon biểu thức A

b) Tính giá trị cua A khi\(|x-2=1|\)

c) Tìm giá trị nguyên của x để A có giá trị nguyên

Bài 2

Cho tam giác ABC vuông tại A , gọi m là trung trung điểm của AC . Gọi D là điểm đối xứng với B qua M

a) Chứng minh tứ giác ABCD là hình bình hành 

b) Gọi N là điểm đối xứng với B qua A . Chứng minh tứ giác ACDN là hình chữ nhật

c) Kéo dài MN cắt BC tại I . Vẽ đường thẳng A song song với MN cắt BC ở K. Chứng minh : KC = 2BK

d) Qua B kẻ dduownfd thẳng song song với MN cắt AC kéo dài tại E. Tam giác ABC cần có thêm điều kiện gì để tứ giác EBMN là hình vuông

Bài 3

Cho a tthoar mãn a2 - 5a + 2 = 0 . Tính giá trị của biểu thức

P = a5 - a4 - 18a3 + 9a-5a + 2017 + (a4 - 40a2 + 4 ) : a2

giúp em với mai em nọp bài

em cảm ơn trước

 

1
20 tháng 3 2020

a) \(ĐKXĐ:x\ne\pm3\)

      \(A=\frac{5}{x+3}-\frac{2}{3-x}+\frac{3x^2-2x-9}{x^2-9}\)

\(\Leftrightarrow A=\frac{5\left(x-3\right)+2\left(x+3\right)-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{5x-15+2x+6-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{-3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{-3x}{x+3}\)

b) Khi \(\left|x-2\right|=1\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\2-x=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)

Thay x = 1 vào A, ta được :

\(A=\frac{-3}{1+3}=\frac{-3}{4}\)

Vậy khi \(\left|x-2\right|=1\Leftrightarrow A=-\frac{3}{4}\)

c) Để \(A\inℤ\)

\(\Leftrightarrow\frac{-3x}{x+3}\inℤ\)

\(\Leftrightarrow-3x⋮x+3\)

\(\Leftrightarrow-3\left(x+3\right)+9⋮x+3\)

\(\Leftrightarrow9⋮x+3\)

\(\Leftrightarrow x+3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)

27 tháng 8 2020

1) 

a) \(\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)

\(=6x^2+7x-5+12x^2+5x-2\)

\(=18x^2+12x-7\)

Vì \(\left|x\right|=2\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

+ Nếu: \(x=2\Rightarrow Bt=18.2^2+12.2-7=89\)

+ Nếu: \(x=-2\Rightarrow Bt=18.\left(-2\right)^2+12.\left(-2\right)-7=41\)

b) Ta có: Tại x=-1/5 , y=-5 thì

\(Bt=25.\left(-\frac{1}{5}\right)^2-2.\left(-\frac{1}{5}\right).\left(-5\right)+\frac{1}{5}.\left(-5\right)^2\)

\(=1-2+5=4\)

16 tháng 12 2018

Bài 1 :

a) \(3x^2+4x-7\)

\(=3x^2-3x+7x-7\)

\(=3x\left(x-1\right)+7\left(x-1\right)\)

\(\left(x-1\right)\left(3x+7\right)\)

b) \(3x^2+48+24x-12y^2\)

\(=3\left(x^2+16+8x-4y^2\right)\)

\(=3\left[\left(x+4\right)^2-\left(2y\right)^2\right]\)

\(=3\left(x-2y+4\right)\left(x+2y+4\right)\)

16 tháng 12 2018

Bài 2 :

a) Phân thức xác định \(\Leftrightarrow\hept{\begin{cases}x-3y\ne0\\2xy-1\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne3y\\2xy\ne1\\x\ne-2\end{cases}}}\)

b) \(A=\left(\frac{x+2y}{x-3y}+\frac{5y}{3y-x}-2xy\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)

\(A=\left(\frac{x+2y}{x-3y}-\frac{5y}{x-3y}-\frac{2xy\left(x-3y\right)}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)

\(A=\left(\frac{x+2y-5y-2x^2y+6xy^2}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)

\(A=\left(\frac{x-3y-2x^2y+6xy^2}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)

\(A=\frac{\left(x-3y\right)-2xy\left(x-3y\right)}{x-3y}\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)

\(A=\frac{-\left(x-3y\right)\left(2xy-1\right)\left(x+2\right)}{\left(x-3y\right)\left(2xy-1\right)}+\frac{x^2-3}{x+2}\)

\(A=\frac{-\left(x+2\right)\left(x+2\right)}{\left(x+2\right)}+\frac{x^2-3}{x+2}\)

\(A=\frac{-x^2-4x-4+x^2-3}{x+2}\)

\(A=\frac{-4x-7}{x+2}\)

c) Thay x = 3 ( vì y bị triệt tiêu hết nên ko xét đến đỡ mệt ng :) )

\(A=\frac{-4\cdot3-7}{3+2}=\frac{-19}{5}\)

28 tháng 4 2017

Câu trả lời sai là:

(C) Giá trị của Q tại \(x=3\)\(\dfrac{3-3}{3+3}=0\)

Do ĐKXĐ của phương trình

\(Q=\dfrac{x^2-6x+9}{x^2-9}\) \(x\ne\pm3\)