Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cos an pha =căn(1-sin2anpha)=\(\sqrt{1-\left(\dfrac{7}{25}\right)^2}\)=\(\dfrac{24}{25}\)
cot anpha =cos anpha :sin anpha =\(\dfrac{24}{25}\):\(\dfrac{7}{25}\) =\(\dfrac{24}{7}\)
\(cosa=-\sqrt{1-\dfrac{16}{25}}=-\dfrac{3}{5}\)
\(M=\dfrac{3\cdot\dfrac{4}{5}+2\cdot\dfrac{-3}{5}}{6+16\cdot\left(-\dfrac{3}{5}:\dfrac{4}{5}\right)^2}=\dfrac{\dfrac{6}{5}}{6+16\cdot\dfrac{9}{16}}=\dfrac{\dfrac{6}{5}}{6+9}=\dfrac{6}{5}:15=\dfrac{6}{75}=\dfrac{2}{25}\)
a)
\(\sin ^4a-\cos ^4a+1=(\sin ^2a-\cos ^2a)(\sin ^2a+\cos^2a)+1\)
\(=(\sin ^2a-\cos ^2a).1+1=\sin ^2a-\cos ^2a+\sin ^2a+\cos ^2a\)
\(=2\sin ^2a\)
b) \(\sin ^2a+2\cos ^2a-1=(\sin ^2a+\cos^2a)+\cos ^2a-1\)
\(=1+\cos ^2a-1=\cos ^2a\)
\(\Rightarrow \frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{\frac{\cos ^2a}{\sin ^2a}}=\sin ^2a\)
c)
\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)
\(=\frac{1}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\frac{1}{\cos ^2a}-1\)
\(=\frac{1-\cos ^2a}{\cos ^2a}=\frac{\sin ^2a}{\cos ^2a}=\tan ^2a\)
d)
\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}\) \(=\frac{\sin ^2a(1-\frac{1}{\cos ^2a})}{\cos ^2a(1-\frac{1}{\sin ^2a})}\)
\(=\frac{\sin ^2a.\frac{\cos ^2a-1}{\cos ^2a}}{\cos ^2a.\frac{\sin ^2a-1}{\sin ^2a}}\) \(=\frac{\sin ^2a.\frac{-\sin ^2a}{\cos ^2a}}{\cos ^2a.\frac{-\cos ^2a}{\sin ^2a}}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)
f)
\(\frac{(\sin a+\cos a)^2-1}{\cot a-\sin a\cos a}=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\frac{\cos a}{\sin a}-\sin a\cos a}\)
\(=\sin a.\frac{1+2\sin a\cos a-1}{\cos a-\cos a\sin ^2a}\)
\(=\sin a. \frac{2\sin a\cos a}{\cos a(1-\sin ^2a)}=\sin a. \frac{2\sin a\cos a}{\cos a. \cos^2 a}=\frac{2\sin ^2a}{\cos ^2a}=2\tan ^2a\)
Do \(\dfrac{\pi}{2}< \alpha< \pi\) nên \(tan\alpha< 0,cot\alpha< 0;cos\alpha< 0\).
Vì vậy: \(cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{\sqrt{7}}{4}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{3}{4}:\dfrac{-\sqrt{7}}{4}=\dfrac{-3}{\sqrt{7}}\).
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{-\sqrt{7}}{3}\).
\(A=\dfrac{2tan\alpha-3cot\alpha}{cos\alpha+tan\alpha}\)\(=\dfrac{2.\dfrac{-3}{\sqrt{7}}-3.\dfrac{-\sqrt{7}}{3}}{\dfrac{-\sqrt{7}}{4}+\dfrac{-3}{\sqrt{7}}}\)
\(=\dfrac{\dfrac{-6}{\sqrt{7}}+\sqrt{7}}{\dfrac{-7-12}{4\sqrt{7}}}\)\(=\dfrac{\dfrac{-6+7}{\sqrt{7}}.4\sqrt{7}}{-19}\)\(=\dfrac{\dfrac{1}{\sqrt{7}}.4\sqrt{7}}{-19}=-\dfrac{4}{19}\).
b) \(\dfrac{cos^2\alpha+cot^2\alpha}{tan\alpha-cot\alpha}=\dfrac{\left(-\dfrac{\sqrt{7}}{4}\right)^2+\left(\dfrac{-\sqrt{7}}{3}\right)^2}{\dfrac{-3}{\sqrt{7}}+\dfrac{\sqrt{7}}{3}}\)
\(=\dfrac{\dfrac{7}{16}+\dfrac{7}{9}}{\dfrac{-9+7}{3\sqrt{7}}}=\dfrac{\dfrac{175}{144}}{\dfrac{-2}{3\sqrt{7}}}=\dfrac{-175}{96\sqrt{7}}\).
a) Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(tan\alpha,cot\alpha>0\) và \(sin\alpha,cos\alpha< 0\).
\(\left\{{}\begin{matrix}tan\alpha-3cot\alpha=6\\tan\alpha cot\alpha=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=6+3cot\alpha\\\left(6+3cot\alpha\right)cot\alpha=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=6+3cot\alpha\\3cot^2\alpha+6cot\alpha-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=6+3cot\alpha\\cot\alpha=\dfrac{-3+2\sqrt{3}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=3+2\sqrt{3}\\cot\alpha=\dfrac{-3+2\sqrt{3}}{3}\end{matrix}\right.\).
Có \(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\Rightarrow cos^2\alpha=\dfrac{1}{tan^2\alpha+1}\).
Có thể đề sai.
a/ \(\dfrac{\sin x+\cos x-1}{1-\cos x}=\dfrac{2\cos x}{\sin x-\cos x+1}\)
\(\Leftrightarrow-2\cos^2x+2\cos x-2\cos x+2\cos^2x=0\)
\(\Leftrightarrow0=0\) (đúng)
\(\RightarrowĐPCM\)
b/ \(\tan a.\tan b=\dfrac{\tan a+\tan b}{\cot a+\cot b}\)
\(\Leftrightarrow\tan a.\tan b.\left(\cot a+\cot b\right)=\tan a+\tan b\)
\(\Leftrightarrow\tan a.\tan b.\cot a+\tan a.\tan b.\cot b=\tan a+\tan b\)
\(\Leftrightarrow\tan b+\tan a=\tan a+\tan b\) (đúng)
\(\RightarrowĐPCM\)
a) \(\dfrac{tan\alpha-tan\beta}{cot\beta-cot\alpha}=\dfrac{\dfrac{sin\alpha}{cos\alpha}-\dfrac{sin\beta}{cos\beta}}{\dfrac{cos\beta}{sin\beta}-\dfrac{cos\alpha}{sin\alpha}}\)
\(=\dfrac{\dfrac{sin\alpha cos\beta-cos\alpha sin\beta}{cos\alpha cos\beta}}{\dfrac{cos\beta sin\alpha-cos\alpha sin\beta}{sin\beta sin\alpha}}\)
\(=\dfrac{sin\beta sin\alpha}{cos\beta cos\alpha}=tan\alpha tan\beta\).
b) \(tan100^o+\dfrac{sin530^o}{1+sin640^o}=tan100^o+\dfrac{sin170^o}{1+sin280^o}\)
\(=-cot10^o+\dfrac{sin10^o}{1-sin80^o}\)\(=\dfrac{-cos10^o}{sin10^o}+\dfrac{sin10^o}{1-cos10^o}\)
\(=\dfrac{-cos10^o+cos^210^o+sin^210^o}{sin10^o\left(1-cos10^o\right)}\) \(=\dfrac{1-cos10^o}{sin10^o\left(1-cos10^o\right)}=\dfrac{1}{sin10^o}\) .
1) \(\dfrac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
\(VT=\dfrac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}\)
\(VT=\dfrac{cosx\left(2cos-1\right)}{sinx\left(2cosx-1\right)}\)
\(VT=\dfrac{cosx}{sinx}=cotx=VP\) ( đpcm )
b) \(\dfrac{sinx+sin\dfrac{x}{2}}{1+cosx+cos\dfrac{x}{2}}=tan\dfrac{x}{2}\)
\(VT=\dfrac{sin\left(2.\dfrac{x}{2}\right)+sin\dfrac{x}{2}}{1+cos\left(2.\dfrac{x}{2}\right)+cos\dfrac{x}{2}}\)
\(VT=\dfrac{2sin\dfrac{x}{2}.cos\dfrac{x}{2}+sin\dfrac{x}{2}}{1+2cos^2\dfrac{x}{2}-1+cos\dfrac{x}{2}}\)
\(VT=\dfrac{2sin\dfrac{x}{2}.cos\dfrac{x}{2}+sin\dfrac{x}{2}}{2cos^2\dfrac{x}{2}+cos\dfrac{x}{2}}\)
\(VT=\dfrac{sin\dfrac{x}{2}\left(2cos\dfrac{x}{2}+1\right)}{cos\dfrac{x}{2}\left(2cos\dfrac{x}{2}+1\right)}\)
\(VT=\dfrac{sin\dfrac{x}{2}}{cos\dfrac{x}{2}}=tan\dfrac{x}{2}=VP\) ( đpcm )
c) \(\dfrac{2cos2x-sin4x}{2cos2x+sin4x}=tan^2\left(\dfrac{\pi}{4}-x\right)\)
\(VT=\dfrac{2cos2x-sin\left(2.2x\right)}{2cos2x+sin\left(2.2x\right)}\)
\(VT=\dfrac{2cos2x-2sin2x.cos2x}{2cos2x+2sin2x.cos2x}\)
\(VT=\dfrac{2cos2x\left(1-sin2x\right)}{2cos2x\left(1+sin2x\right)}\)
\(VT=\dfrac{1-sin2x}{1+sin2x}\)
\(VP=tan^2\left(\dfrac{\pi}{4}-x\right)=\dfrac{1-cos2\left(\dfrac{\pi}{4}-x\right)}{1+cos2\left(\dfrac{\pi}{4}-x\right)}\)
\(VP=\dfrac{1-cos\left(\dfrac{\pi}{2}-2x\right)}{1+cos\left(\dfrac{\pi}{2}-2x\right)}\)
\(VP=\dfrac{1-sin2x}{1+cos2x}=VT\) ( đpcm )
d) \(tanx-tany=\dfrac{sin\left(x-y\right)}{cosx.cosy}\)
\(VP=\dfrac{sin\left(x-y\right)}{cosx.cosy}=\dfrac{sinx.cosy-cosx.siny}{cosx.cosy}\)
\(VP=\dfrac{sinx.cosy}{cosx.cosy}-\dfrac{cosx.siny}{cosx.cosy}\)
\(VP=\dfrac{sinx}{cosx}-\dfrac{siny}{cosy}=tanx-tany=VT\) ( đpcm )
ta có : \(sin^2\alpha+cos^2\alpha=1\Leftrightarrow sin^2\alpha+\dfrac{9}{16}=1\Leftrightarrow sin^2\alpha=\dfrac{7}{16}\)
\(\Leftrightarrow sin\alpha=\pm\dfrac{\sqrt{7}}{4}\)
với \(sin\alpha=\dfrac{\sqrt{7}}{4}\)\(\Rightarrow tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{\sqrt{7}}{4}}{\dfrac{3}{4}}=\dfrac{\sqrt{7}}{3}\) \(\Rightarrow cot=\dfrac{3}{\sqrt{7}}\)
với \(sin\alpha=\dfrac{-\sqrt{7}}{4}\)\(\Rightarrow tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{-\sqrt{7}}{4}}{\dfrac{3}{4}}=\dfrac{-\sqrt{7}}{3}\) \(\Rightarrow cot=\dfrac{-3}{\sqrt{7}}\)
vậy \(sin\alpha=\pm\dfrac{\sqrt{7}}{4}\) ; \(tan\alpha=\pm\dfrac{\sqrt{7}}{3}\) ; \(cot=\pm\dfrac{3}{\sqrt{7}}\)