Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=sin\left(\dfrac{\pi}{4}+x\right)-cos\left(\dfrac{\pi}{4}-x\right)\)
\(\Leftrightarrow A=sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx-\left(cos\dfrac{\pi}{4}.cosx+sin\dfrac{\pi}{4}.sinx\right)\)
\(\Leftrightarrow A=sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx-cos\dfrac{\pi}{4}.cosx-sin\dfrac{\pi}{4}.sinx\)
\(\Leftrightarrow A=\dfrac{\sqrt{2}}{2}.cosx+\dfrac{\sqrt{2}}{2}.sinx-\dfrac{\sqrt{2}}{2}.cosx-\dfrac{\sqrt{2}}{2}.sinx\)
\(\Leftrightarrow A=0\)
b) \(B=cos\left(\dfrac{\pi}{6}-x\right)-sin\left(\dfrac{\pi}{3}+x\right)\)
\(\Leftrightarrow B=cos\dfrac{\pi}{6}.cosx+sin\dfrac{\pi}{6}.sinx-\left(sin\dfrac{\pi}{3}.cosx+cos\dfrac{\pi}{3}.sinx\right)\)
\(\Leftrightarrow B=cos\dfrac{\pi}{6}.cosx+sin\dfrac{\pi}{6}.sinx-sin\dfrac{\pi}{3}.cosx-cos\dfrac{\pi}{3}.sinx\)
\(\Leftrightarrow B=\dfrac{\sqrt{3}}{2}.cosx+\dfrac{1}{2}.sinx-\dfrac{\sqrt{3}}{2}.cosx-\dfrac{1}{2}.sinx\)
\(\Leftrightarrow B=0\)
c) \(C=sin^2x+cos\left(\dfrac{\pi}{3}-x\right).cos\left(\dfrac{\pi}{3}+x\right)\)
\(\Leftrightarrow C=sin^2x+\left(cos\dfrac{\pi}{3}.cosx+sin\dfrac{\pi}{3}.sinx\right).\left(cos\dfrac{\pi}{3}.cosx-sin\dfrac{\pi}{3}.sinx\right)\)
\(\Leftrightarrow C=sin^2x+\left(\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right).\left(\dfrac{1}{2}.cosx-\dfrac{\sqrt{3}}{2}.sinx\right)\)
\(\Leftrightarrow C=sin^2x+\dfrac{1}{4}.cos^2x-\dfrac{3}{4}.sin^2x\)
\(\Leftrightarrow C=\dfrac{1}{4}.sin^2x+\dfrac{1}{4}.cos^2x\)
\(\Leftrightarrow C=\dfrac{1}{4}\left(sin^2x+cos^2x\right)\)
\(\Leftrightarrow C=\dfrac{1}{4}\)
d) \(D=\dfrac{1-cos2x+sin2x}{1+cos2x+sin2x}.cotx\)
\(\Leftrightarrow D=\dfrac{1-\left(1-2sin^2x\right)+2sinx.cosx}{1+2cos^2a-1+2sinx.cosx}.cotx\)
\(\Leftrightarrow D=\dfrac{2sin^2x+2sinx.cosx}{2cos^2x+2sinx.cosx}.cotx\)
\(\Leftrightarrow D=\dfrac{2sinx\left(sinx+cosx\right)}{2cosx\left(cosx+sinx\right)}.cotx\)
\(\Leftrightarrow D=\dfrac{sinx}{cosx}.cotx\)
\(\Leftrightarrow D=tanx.cotx\)
\(\Leftrightarrow D=1\)
1,\(VT=\dfrac{sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}{cos\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}+\dfrac{cos\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}{sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}\)\(=\dfrac{sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)^2+cos^2\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}{cos\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right).sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}\)
\(=\dfrac{1}{\dfrac{1}{2}.sin\left(\dfrac{\pi}{2}+x\right)}=\dfrac{2}{cosx}=VP\)
2,\(VT=\left(sin^4x-cos^4x\right)\left(sin^4x+cos^4x\right)=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)
\(=\left(sin^2-cos^2x\right)\left(1-2sin^2x.cos^2x\right)\)\(=-cos2x\left(1-\dfrac{1}{2}sin^22x\right)\)\(=-\dfrac{cos2x\left(2-sin^22x\right)}{2}=-\dfrac{cos2x\left(1+cos^22x\right)}{2}\)
\(VP=-\left(\dfrac{7}{8}cos2x+\dfrac{1}{8}cos6x\right)=-\dfrac{7}{8}cos2x-\dfrac{1}{8}\left[4cos^32x-3cos2x\right]=-\dfrac{7}{8}.cos2x-\dfrac{1}{2}cos^32x+\dfrac{3}{8}cos2x\)
\(=-\dfrac{1}{2}cos2x-\dfrac{1}{2}cos^32x=\dfrac{-cos2x\left(1+cos^22x\right)}{2}\)
\(\Rightarrow VT=VP\)(đpcm)
3, \(VT=3-4\left(1-2sin^2x\right)+1-2sin^22x=8sin^2x-2sin^22x=8sin^2x-8.sin^2x.cos^2x=8sin^2x\left(1-cos^2x\right)=8sin^4x=VP\)
4,\(VP=\dfrac{1}{2}\left[sin\left(x+\dfrac{\pi}{2}\right)+sin\left(3x+\dfrac{\pi}{6}\right)\right]-\dfrac{1}{2}\left[cos\left(3x-\dfrac{\pi}{3}\right)+cos\left(x+\pi\right)\right]\)
\(=\dfrac{1}{2}\left(cosx+sin3x.\dfrac{\sqrt{3}}{2}+\dfrac{cos3x}{2}\right)-\dfrac{1}{2}\left(\dfrac{cos3x}{2}+sin3x.\dfrac{\sqrt{3}}{2}-cosx\right)\)
\(=\dfrac{1}{2}.2cosx=cosx=VP\)
5, \(VP=4cos\left(2x-\dfrac{\pi}{6}\right).\left(sinx.\dfrac{\sqrt{3}}{2}+\dfrac{cosx}{2}\right)^2\)\(=cos\left(2x-\dfrac{\pi}{6}\right).\left(sinx.\sqrt{3}+cosx\right)^2\)
\(VT=2.cos\left(2x-\dfrac{\pi}{6}\right)+2.sin\left(2x-\dfrac{\pi}{6}\right).cos\left(2x-\dfrac{\pi}{6}\right)=2cos\left(2x-\dfrac{\pi}{6}\right)\left[1+sin\left(2x-\dfrac{\pi}{6}\right)\right]\)
\(=2cos\left(2x-\dfrac{\pi}{6}\right)\left(1+\dfrac{sin2x.\sqrt{3}}{2}-\dfrac{cos2x}{2}\right)\)\(=2cos\left(2x-\dfrac{\pi}{6}\right)\left(sin^2x+cos^2x+sinx.cosx.\sqrt{3}-\dfrac{cos^2x-sin^2x}{2}\right)\)
\(=2cos\left(2x-\dfrac{\pi}{6}\right)\left(sin^2x.\dfrac{3}{2}+sinx.cosx.\sqrt{3}+\dfrac{cos^2x}{2}\right)\)\(=cos\left(2x-\dfrac{\pi}{6}\right)\left(sin^2x.3+2sinx.cosx.\sqrt{3}+cos^2x\right)\)
\(=cos\left(2x-\dfrac{\pi}{6}\right)\left(sinx.\sqrt{3}+cosx\right)^2\)
\(\Rightarrow VT=VP\) (dpcm)
Câu a)
Từ \(\tan a=3\Leftrightarrow \frac{\sin a}{\cos a}=3\Rightarrow \sin a=3\cos a\)
Do đó:
\(\frac{\sin a\cos a+\cos ^2a}{2\sin ^2a-\cos ^2a}=\frac{3\cos a\cos a+\cos ^2a}{2(3\cos a)^2-\cos ^2a}\)
\(=\frac{\cos ^2a(3+1)}{\cos ^2a(18-1)}=\frac{4}{17}\)
Câu b)
Có: \(\cot \left(\frac{\pi}{2}-x\right)=\tan x=\frac{\sin x}{\cos x}\)
\(\cos\left(\frac{\pi}{2}+x\right)=-\sin x\)
\(\Rightarrow \cot \left(\frac{\pi}{2}-x\right)\cos \left(\frac{\pi}{2}+x\right)=\frac{-\sin ^2x}{\cos x}\)
Và:
\(\frac{\sin (\pi-x)\cot x}{1-\sin ^2x}=\frac{\sin x\cot x}{\cos^2x}=\frac{\sin x.\frac{\cos x}{\sin x}}{\cos^2x}=\frac{1}{\cos x}\)
Do đó:
\(\Rightarrow \cot \left(\frac{\pi}{2}-x\right)\cos \left(\frac{\pi}{2}+x\right)+\frac{\sin (\pi-x)\cot x}{1-\sin ^2x}=\frac{1-\sin ^2x}{\cos x}=\frac{\cos ^2x}{\cos x}=\cos x\)
Ta có đpcm.
Câu 1 đề sai, chắc chắn 1 trong 2 cái \(cot^2x\) phải có 1 cái là \(cos^2x\)
2.
\(\dfrac{1-sinx}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{\left(1-sinx\right)\left(1+sinx\right)-cos^2x}{cosx\left(1+sinx\right)}=\dfrac{1-sin^2x-cos^2x}{cosx\left(1+sinx\right)}\)
\(=\dfrac{1-\left(sin^2x+cos^2x\right)}{cosx\left(1+sinx\right)}=\dfrac{1-1}{cosx\left(1+sinx\right)}=0\)
3.
\(\dfrac{tanx}{sinx}-\dfrac{sinx}{cotx}=\dfrac{tanx.cotx-sin^2x}{sinx.cotx}=\dfrac{1-sin^2x}{sinx.\dfrac{cosx}{sinx}}=\dfrac{cos^2x}{cosx}=cosx\)
4.
\(\dfrac{tanx}{1-tan^2x}.\dfrac{cot^2x-1}{cotx}=\dfrac{tanx}{1-tan^2x}.\dfrac{\dfrac{1}{tan^2x}-1}{\dfrac{1}{tanx}}=\dfrac{tanx}{1-tan^2x}.\dfrac{1-tan^2x}{tanx}=1\)
5.
\(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+tan^2x=\dfrac{sin^2x+cos^2x}{cos^2x}+tan^2x\)
\(=tan^2x+1+tan^2x=1+2tan^2x\)
b, \(VT=\dfrac{1-sin2x}{1+sin2x}\)
\(=\dfrac{sin^2x+cos^2x-2sinx.cosx}{sin^2x+cos^2x+2sinx.cosx}\)
\(=\dfrac{\left(sinx-cosx\right)^2}{\left(sinx+cosx\right)^2}\)
\(=\dfrac{\left(\dfrac{sinx-cosx}{cosx}\right)^2}{\left(\dfrac{sinx+cosx}{cosx}\right)^2}\)
\(=\dfrac{\left(\dfrac{sinx}{cosx}-1\right)^2}{\left(\dfrac{sinx}{cosx}+1\right)^2}\)
\(=\dfrac{\left(tanx-tan\dfrac{\pi}{4}\right)^2}{\left(1+tanx.tan\dfrac{\pi}{4}\right)^2}\)
\(=tan^2\left(x-\dfrac{\pi}{4}\right)=tan^2\left(\dfrac{\pi}{4}-x\right)=VP\)
\(tử:=\dfrac{1}{2}\left[sin\left(60^o-x+30^o-x\right)+sin\left(60^o-x-30^2+x\right)\right]+\dfrac{1}{2}\left[sin\left(30^o-x+60^o-x\right)+sin\left(30^o-x-60^o+x\right)\right]\)
\(=\dfrac{1}{2}\left[2sin\left(\dfrac{\pi}{2}-2x\right)+sin\left(\dfrac{\pi}{6}\right)+sin\left(-\dfrac{\pi}{6}\right)\right]=\dfrac{1}{2}.\left[2sin\left(\dfrac{\pi}{2}-2x\right)+0\right]=sin\left(\dfrac{\pi}{2}-2x\right)=cos2x\)
\(VT=\dfrac{cos2x}{sin4x}=\dfrac{cos2x}{2sin2x.cos2x}=\dfrac{1}{2sin2x}=\dfrac{1}{4sinx.cosx}=\dfrac{\dfrac{1}{cos^2x}}{\dfrac{4sinx.cosx}{cos^2x}}=\dfrac{1+tan^2x}{\dfrac{4sĩnx}{cosx}}=\dfrac{1+tan^2x}{4tanx}=VP\)
\(a)sin^4x+cos^4x=1-2sin^2x\cdot cos^2x\)
\(\Leftrightarrow sin^4x+2sin^2x\cdot cos^2x+cos^4x=1\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2=1\)(luôn đúng)
a, \(\dfrac{1+cosx+cos2x+cos3x}{2cos^2x+cosx-1}\)
\(=\dfrac{1+cos2x+cosx+cos3x}{2cos^2x+cosx-1}\)
\(=\dfrac{2cos^2x+2cos2x.cosx}{cos2x+cosx}\)
\(=\dfrac{2cosx\left(cos2x+cosx\right)}{cos2x+cosx}=2cosx\)
b) \(cos\dfrac{5x}{2}.cos\dfrac{3x}{2}+sin\dfrac{7x}{2}.sin\dfrac{x}{2}\)
\(=cos\dfrac{4x+x}{2}.cos\dfrac{4x-x}{2}+sin\dfrac{4x+3x}{2}.sin\dfrac{4x-3x}{2}\)
\(=\dfrac{1}{2}\left(cos4x+cosx\right)-\dfrac{1}{2}\left(cos4x-cos3x\right)\)
\(=\dfrac{1}{2}\left(cosx+cos3x\right)=\dfrac{1}{2}.2cos2x.cos\left(-x\right)\)\(=cosx.cos2x\)
Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý
Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)
1) \(\dfrac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
\(VT=\dfrac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}\)
\(VT=\dfrac{cosx\left(2cos-1\right)}{sinx\left(2cosx-1\right)}\)
\(VT=\dfrac{cosx}{sinx}=cotx=VP\) ( đpcm )
b) \(\dfrac{sinx+sin\dfrac{x}{2}}{1+cosx+cos\dfrac{x}{2}}=tan\dfrac{x}{2}\)
\(VT=\dfrac{sin\left(2.\dfrac{x}{2}\right)+sin\dfrac{x}{2}}{1+cos\left(2.\dfrac{x}{2}\right)+cos\dfrac{x}{2}}\)
\(VT=\dfrac{2sin\dfrac{x}{2}.cos\dfrac{x}{2}+sin\dfrac{x}{2}}{1+2cos^2\dfrac{x}{2}-1+cos\dfrac{x}{2}}\)
\(VT=\dfrac{2sin\dfrac{x}{2}.cos\dfrac{x}{2}+sin\dfrac{x}{2}}{2cos^2\dfrac{x}{2}+cos\dfrac{x}{2}}\)
\(VT=\dfrac{sin\dfrac{x}{2}\left(2cos\dfrac{x}{2}+1\right)}{cos\dfrac{x}{2}\left(2cos\dfrac{x}{2}+1\right)}\)
\(VT=\dfrac{sin\dfrac{x}{2}}{cos\dfrac{x}{2}}=tan\dfrac{x}{2}=VP\) ( đpcm )
c) \(\dfrac{2cos2x-sin4x}{2cos2x+sin4x}=tan^2\left(\dfrac{\pi}{4}-x\right)\)
\(VT=\dfrac{2cos2x-sin\left(2.2x\right)}{2cos2x+sin\left(2.2x\right)}\)
\(VT=\dfrac{2cos2x-2sin2x.cos2x}{2cos2x+2sin2x.cos2x}\)
\(VT=\dfrac{2cos2x\left(1-sin2x\right)}{2cos2x\left(1+sin2x\right)}\)
\(VT=\dfrac{1-sin2x}{1+sin2x}\)
\(VP=tan^2\left(\dfrac{\pi}{4}-x\right)=\dfrac{1-cos2\left(\dfrac{\pi}{4}-x\right)}{1+cos2\left(\dfrac{\pi}{4}-x\right)}\)
\(VP=\dfrac{1-cos\left(\dfrac{\pi}{2}-2x\right)}{1+cos\left(\dfrac{\pi}{2}-2x\right)}\)
\(VP=\dfrac{1-sin2x}{1+cos2x}=VT\) ( đpcm )
d) \(tanx-tany=\dfrac{sin\left(x-y\right)}{cosx.cosy}\)
\(VP=\dfrac{sin\left(x-y\right)}{cosx.cosy}=\dfrac{sinx.cosy-cosx.siny}{cosx.cosy}\)
\(VP=\dfrac{sinx.cosy}{cosx.cosy}-\dfrac{cosx.siny}{cosx.cosy}\)
\(VP=\dfrac{sinx}{cosx}-\dfrac{siny}{cosy}=tanx-tany=VT\) ( đpcm )