\(\left(u_n\right)\) có \(u_1=-7\) và q =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2023

1) \(\left(u_n\right):\left\{{}\begin{matrix}u_1=-7\\q=2\end{matrix}\right.\)

\(u_5=-7.q^4=-7.16=-112\)

\(u_m=u_1.q^{m-1}\)

\(\Leftrightarrow-7.2^{m-1}=-3584\)

\(\Leftrightarrow2^{m-1}=512=2^9\)

\(\Leftrightarrow m-1=9\)

\(\Leftrightarrow m=10\)

Vậy số \(-3584\) là số thứ \(10\) của cấp số nhân

17 tháng 9 2023

\(\left(u_n\right):\left\{{}\begin{matrix}u_1=-3\\q=-2\end{matrix}\right.\)

\(u_{10}=-u_1.q^9=-3.\left(-2\right)^9=1536\)

\(u_m=u_1.q^{m-1}\)

\(\Leftrightarrow-3.\left(-2\right)^{m-1}=-3072\)

\(\Leftrightarrow\left(-2\right)^{m-1}=1024=\left(-2\right)^{10}\)

\(\Leftrightarrow m-1=10\)

\(\Leftrightarrow m=11\)

Vậy số \(-3072\) là số thứ \(11\) của cấp số nhân.

25 tháng 5 2017

a)
Gọi q là công bội của \(\left(u_n\right)\). Ta có:
\(\left\{{}\begin{matrix}u_1+u_1q^4=51\\u_1q+u_1q^5=102\end{matrix}\right.\)\(\Rightarrow\dfrac{u_1+u_1q^4}{u_1q_1+u_1q^5}=\dfrac{51}{102}\)\(\Leftrightarrow\dfrac{1+q^4}{q+q^5}=\dfrac{1}{2}\)\(\Leftrightarrow\dfrac{1+q^4}{q\left(1+q^4\right)}=\dfrac{1}{2}\)\(\Leftrightarrow\dfrac{1}{q}=\dfrac{1}{2}\)\(\Leftrightarrow q=2\).
Suy ra: \(u_1+2^4u_1=51\)\(\Leftrightarrow17u_1=51\)\(\Leftrightarrow u_1=3\).
b) \(S_n=\dfrac{u_1\left(1-q^n\right)}{1-q}=\)\(\dfrac{3\left(1-2^n\right)}{1-2}=3\left(2^n-1\right)=3069\)
\(\Leftrightarrow2^n-1=1023\)\(\Leftrightarrow2^n=1024=2^{10}\)\(\Leftrightarrow n=10\).
Vậy tổng của 10 số hạng đầu tiên bằng 10.
c)
\(u_1.q^{n-1}=3.2^{n-1}=12288\)\(\Leftrightarrow2^{n-1}=4096=2^{12}\)\(\Leftrightarrow n-1=12\)\(\Leftrightarrow n=13\).
Vậy số hạng thứ 13 bằng 12 288.

9 tháng 4 2017

a) Áp dụng công thức tính số hạng tổng quát, ta có:

u3 = 3 = u1.q2 và u5 = 27 = u1.q4.

Vì 27 = (u1q2).q2 = 3.q2 nên q2 = 9 hay q = ±3.

Thay q2 = 9 vào công thức chứa u3, ta có u1 = .

- Nếu q = 3, ta có cấp số nhân: , 1, 3, 9, 27.

- Nếu q = -3, ta có cáp số nhân: , -1, 3, -9, 27.

b) Áp dụng công thức tính số hạng tỏng quát từ giả thiết, ta có:

hay

Từ hệ trên ta được: 50.q = 25 => q = .

Và u1 = .

Ta có cấp số nhân .



4 tháng 4 2017

Trong bài này ta áp dụng công thức tinh số hạng tổng quát un = u1.qn-1, biết hai đại lượng, ta sẽ tìm đại lượng còn lại:

a) q = 3.

b) u1 =

c) Theo đề bài ta có un = 192, từ đó ta tìm được n. Đáp số: n =7



25 tháng 5 2017

a)
\(\dfrac{u_6}{u_1}=q^5=\dfrac{486}{2}=243=3^5\) . Suy ra: \(q=3\).
b)
\(u_4=u_1q^3=u_1.\left(\dfrac{2}{3}\right)^3=\dfrac{8}{21}\)\(\Rightarrow u_1=\dfrac{9}{7}\).
c) \(u_n=3.\left(-2\right)^{n-1}=192\)\(\Leftrightarrow\left(-2\right)^{n-1}=64=\left(-2\right)^6\)\(\Leftrightarrow n-1=6\)\(\Leftrightarrow n=7\).
Vậy số hạng thứ 7 bằng 192.

24 tháng 5 2017

Gọi số hạng đầu và công bội của cấp số nhân là: \(u_1;q\).
a) Theo tính chất của cấp số nhân ta có:
\(\left\{{}\begin{matrix}u_1q^4-u_1=15\\u_1q^3-u_1q=6\end{matrix}\right.\)\(\Rightarrow\dfrac{u_1\left(q^4-1\right)}{u_1\left(q^3-q\right)}=\dfrac{15}{6}\)\(\Leftrightarrow\dfrac{\left(q^2-1\right)\left(q^2+1\right)}{q\left(q^2-1\right)}=\dfrac{15}{6}\)\(\Leftrightarrow\dfrac{q^2+1}{q}=\dfrac{15}{6}\)
\(\Leftrightarrow6\left(q^2+1\right)=15q\)\(\Leftrightarrow6q^2-15q+6=0\)\(\Leftrightarrow\left[{}\begin{matrix}q=2\\q=\dfrac{1}{2}\end{matrix}\right.\).
Với \(q=2\).
Suy ra: \(u_1\left(q^4-q\right)=15\Rightarrow u_1=\dfrac{15}{q^4-q}=\dfrac{15}{14}\).
Với \(q=\dfrac{1}{2}\)
Suy ra \(u_1=\dfrac{15}{q^4-q}=\dfrac{-240}{7}\).

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

Dãy số - cấp số cộng và cấp số nhân

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

9 tháng 4 2017

a)

{u6=192u7=384⇔{u1.q5=192(1)u1.q6=384(2){u6=192u7=384⇔{u1.q5=192(1)u1.q6=384(2)

Lấy (2) chia (1): q = 2 thế vào (1):

(1) ⇔ u1.25 = 192 ⇔ u1 = 6

Vậy u1 = 6 và q = 2

b) Ta có:

{u4−u2=72u5−u3=144⇔{u1.q3−u1.q=72u1.q4−u1.q2=144⇔{u1.q(q2−1)=72(1)u1.q2(q2−1)=144(2){u4−u2=72u5−u3=144⇔{u1.q3−u1.q=72u1.q4−u1.q2=144⇔{u1.q(q2−1)=72(1)u1.q2(q2−1)=144(2)

Lấy 2 chia 1: q = 2 thế vào (1)

(1) ⇔2u1(4 – 1) = 72 ⇔ u1 = 12

Vậy u1 = 12 và q = 2

c) Ta có:

{u2+u5−u4=10u3+u6−u5=20⇔{u1.q+u1.q4−u1.q3=10u1.q2(q2−1)=144(2)⇔{u1q(1+q3−q2)=10(1)u1q(1+q3−q2)=20(2){u2+u5−u4=10u3+u6−u5=20⇔{u1.q+u1.q4−u1.q3=10u1.q2(q2−1)=144(2)⇔{u1q(1+q3−q2)=10(1)u1q(1+q3−q2)=20(2)

Lấy (2) chia (1): q = 2 thế vào (1)

(1) ⇔ 2u1 (1 + 8 – 4) = 10 ⇔ u1 = 1

Vậy u1 = 1 và q = 2


19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

Dãy số - cấp số cộng và cấp số nhân