Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)
\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)
Đề a,b bạn ghi mik ko hiểu
c)Ta có : \(x+y=a=>x^2+y^2+2xy=a^2\)
Mà \(x^2+y^2=b\)nên\(b+2xy=a^2=>xy=\frac{a^2-b}{2}\)
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
Thay \(x+y=a\) ; \(x^2+y^2=b\)và \(xy=\frac{a^2-b}{2}\)ta có : \(x^3+y^3=a\left(b-\frac{a^2-b}{2}\right)=ab-\frac{a^3-ab}{2}\)
a) \(\left(x+y\right)^2=\left(-7\right)^2=49\)
b) \(x^2+y^2=\left(x+y\right)^2-2xy=49-2.12=25\)
c) \(x^3+y^3=\left(x+y\right)\left(x^2+y^2\right)-xy\left(x+y\right)\)
\(=\left(-7\right).25-12\left(-7\right)=-91\)
d) \(x^4+y^4=\left(x^2+y^2\right)^2-2\left(xy\right)^2=25^2-2.12^2=337\)
p/s: mấy câu còn lại lm tương tự nhé
Bài 1.
A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1
B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25
C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )
= -1( 25 + 12 ) + 3.(-12).(-1)
= -37 + 36
= -1
D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37
Bài 2.
M = 3( x2 + y2 ) - 2( x3 + y3 )
= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )
= 3( x2 + y2 ) - 2( x2 - xy + y2 )
= 3x2 + 3y2 - 2x2 + 2xy - 2y2
= x2 + 2xy + y2
= ( x + y )2 = 12 = 1
bài 1:
a)\(A=x^3+y^3+xy=1^3+\left(-1\right)^3+1.\left(-1\right)=1-1-1=-1\)
b)\(B=\sqrt{x^2+y^2}=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=\left|10\right|=10\)
c)\(C=10x+10y+15=10\left(x+y\right)+15=10.1+15=25\)
d)\(D=x^2y+y^2x+5=xy\left(x+y\right)+5=xy.0+5=5\)
e)\(E=4x+7x^2y^2+3y^4+5y^2=?????\)
Bài 2:
bạn chỉ cần tìm nhân tử chung r gộp lại dưới dạng tích
VD: 10x+5xy=5x(2+y)
\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)
\(=4x^2-2y-5x^2+x^2-4y=-6y\)
\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)
\(=8\)
Vậy BT B ko phụ thuộc vào biến
câu sau tương tự
\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)
\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)
\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)
\(\Rightarrow3x^2+14x-2=0\)
\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)
\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)
a) Ta có :
\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x^3-x^2y+xy^2-y^3\right)\)
b) Ta có :
\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)
\(\Rightarrow a^2+b^2+2ab=a^2+b^2+a^2+b^2\)
\(\Rightarrow a^2+b^2=2ab\)
\(\Rightarrow a^2+b^2-2ab=0\)
\(\Rightarrow\left(a-b\right)^2=0\)
\(\Rightarrow a-b=0\)
\(\Rightarrow a=b\)
Vậy ...
Ta có :
\(a^2=\left(x+y\right)^2=x^2+y^2+2xy=x^2+y^2+2b\)
\(\Rightarrow x^2+y^2=a^2-2b\)
\(a^4=\left(x+y\right)^4=x^4+C_4^1x^3y+C_4^2x^2y^2+C_4^3xy^3+y^4\)
\(\Rightarrow a^4=x^4+y^4+4x^3y+6x^2y^2+4xy^3\)
\(\Rightarrow a^4=x^4+y^4+2xy\left(2x^2+3xy+2y^2\right)\)
\(=x^4+y^4+2b\left[3b+2\left(x^2+y^2\right)\right]\)
\(=x^4+y^4+2b\left[3b+2\left(a^2-2b\right)\right]\)
\(=x^4+y^4+6b^2+4a^2b-8b\)
\(\Rightarrow x^4+y^4=a^4-\left(6b^2+4a^2b-8b\right)\)
\(=a^4-4a^2b-6b^2+8b\)
a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=115\)
c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)
\(C=x^2-y^2=\left(x+y\right)\left(x-y\right)=15\cdot5=75\)