Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 .
Từ gt : \(2ab+6bc+2ac=7abc\)và \(a,b,c>0\)
Chia cả hai vế cho abc > 0
\(\Rightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)
Đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\Rightarrow\hept{\begin{cases}x,y,z>0\\2z+6x+2y=7\end{cases}}\)
Khi đó : \(C=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}\)
\(=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)
\(\Rightarrow C=\frac{4}{2x+y}+2x+y+\frac{9}{4x+z}+4x+z+\frac{4}{y+z}+y+z\)\(-\left(2x+y+4x+z+y+z\right)\)
\(=\left(\frac{2}{\sqrt{x+2y}}-\sqrt{x+2y}\right)^2+\left(\frac{3}{\sqrt{4x+z}}-\sqrt{4x+z}\right)^2\)\(+\left(\frac{2}{\sqrt{y+z}}-\sqrt{y+z}\right)^2+17\ge17\)
Khi \(x=\frac{1}{2},y=z=1\)thì \(C=17\)
Vậy GTNN của C là 17 khi a =2; b =1; c = 1
2 .
Áp dụng bất đẳng thức Cauchy ta có :\(1+b^2\ge2b\)nên
\(\frac{a+1}{1+b^2}=\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\)
\(\ge\left(a+1\right)-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{ab+b}{2}\)
\(\Leftrightarrow\frac{a+1}{1+b^2}\ge a+1-\frac{ab+b}{2}\left(1\right)\)
Tương tự ta có:
\(\frac{b+1}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\)
\(\frac{c+1}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\)
Cộng vế theo vế (1), (2) và (3) ta được:
\(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3+\frac{a+b+c-ab-bc-ca}{2}\left(^∗\right)\)
Mặt khác : \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=9\)
\(\Rightarrow\frac{a+b+c-ab-bc-ca}{2}\ge0\)
Nên \(\left(^∗\right)\) \(\Leftrightarrow\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3\left(đpcm\right)\)
Dấu " = " xảy ra khi và chỉ khi \(a=b=c=1\)
Chúc bạn học tốt !!!
Áp dụng Bunhiacopxki dạng phân thức:
VT \(\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\) = 1
a,b,c khác nhau đôi một nghĩa là từng cặp số khác nhau ,là:
+a khác b
+b khác c
+c khác a
\(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0\)
Suy ra: \(ab==-\left(bc+ac\right)=-bc-ac\)
\(bc=-\left(ab+ac\right)=-ab-ac\)
\(ac=-\left(ab+bc\right)=-ab-bc\)
Nên \(a^2+2ab=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)
Tương tự,ta cũng có: \(b^2+2ac=\left(b-a\right)\left(b-c\right)\)
\(c^2+2ab=\left(c-a\right)\left(c-b\right)\)
Vậy \(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}=\frac{b-c+c-a+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)
Ta có:
\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng )
Áp dụng:
\(G=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)
\(\ge\frac{ab\left(a+b\right)}{2ab}+\frac{bc\left(b+c\right)}{2bc}+\frac{ca\left(c+a\right)}{2ca}\)
\(=\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\)
\(=a+b+c=2019\)
Dấu "=" xảy ra tại a=b=c=673
Cách I:(((dành cho nhũng ai biết HĐT a³ + b³ + c³ = [(a + b + c)(a² + b²+ c²-ab-bc-ca)+3abc])))
Ta có:
bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³
=abc(1/a³ + 1/b³ + 1/c³)
=abc[(1/a + 1/b + 1/c)(1/a² + 1/b²+ 1/c²-1/ab-1/bc-1/ca)+3/abc](áp dụng HĐt trên)
=abc.3/(abc)=3
Cách II:
Từ giả thiết suy ra:
(1/a +1/b)³=-1/c³
=>1/a³+1/b³+1/c³=-3.1/a.1/b(1/a+1/b)=3...
=>bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³
=abc(1/a³ + 1/b³ + 1/c³)
=abc.3/(abc)=3
Mik ko biết có đúng ko??
bài 1 áp dụng bất đẳng thức Cô-si swatch ta có:
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}\)=1
dấu bằng xảy ra khi nào bạn tự tìm nh