K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

2. a. \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18\)

\(=2\left(x-2\right)^2-18\)

Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-2\right)^2-18\ge-18\)

Dấu "=" xảy ra \(\Leftrightarrow2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy minA = - 18 <=> x = 2

b. \(B=9x-3x^2=-3\left(x^2-3x+\frac{9}{4}\right)+\frac{27}{4}\)

\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{27}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy maxB = 27/4 <=> x = 3/2

28 tháng 8 2020

Sửa đề:x3-3x2-4x+12

a,x3-3x2-4x+12

=(x3-3x2)-(4x+12)

=x2(x-3)-4(x-3)

=(x2-4)(x-3)

b,x4- 5x2 +4

x4-4x2-x2+4

(x4-x2)-(4x2+4)

x2(x2-1)-4(x2-1)

(x2-4)(x2-1)

  

10 tháng 9 2018

1/

a. \(3x\left(5x^2-2x-1\right)\)

\(=15x^3-6x^2-3x\)

b. \(\left(x^2-2xy+3\right)\left(-xy\right)\)

\(=-x^3y+2x^2y^2-3xy\)

c. \(\left(2x^2-3xy+y^2\right)\left(x+y\right)\)

\(=2x^3-3x^2y+xy^2+2x^2y-3xy^2+y^3\)

\(=2x^3-x^2y-2xy^2\)

10 tháng 9 2018

a) thiếu đề

b) \(\left(3x-3\right)\left(5-21x\right)+\left(7x+4\right)\left(9x-5\right)=44\)

\(15x-63x^2-15+63x+63x^2-35x+36x-20=44\)

\(79x-35=40\)

\(79x=75\)

\(x=\frac{75}{79}\)

28 tháng 6 2017

Câu 1:

\(M=x^2-3x+5\)

\(M=x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{11}{4}\)

\(M=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

            Dấu = xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

    Vậy Min M = 11/4 khi x=3/2

b)\(N=2x^2+3x\)

\(N=2\left(x^2+\frac{3}{2}x\right)\)

\(N=2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)-\frac{9}{8}\)

\(N=2\left(x+\frac{3}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

              Dấu = xảy ra khi \(x+\frac{3}{4}=0\Rightarrow x=-\frac{3}{4}\)

                       Vậy MIn N = -9/8 khi x=-3/4

c)Tự làm nha

28 tháng 6 2017

Ta có : x2 - 3x + 5 

= x2 - 2.x.\(\frac{3}{2}\) + \(\frac{3}{2}^2\) + \(\frac{11}{4}\)

\(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\in R\)

Nên : \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\) \(\ge\frac{11}{4}\forall x\in R\)

Vậy GTNN của biểu thức là : \(\frac{11}{4}\) khi \(x=\frac{3}{2}\)

NM
10 tháng 10 2021

ta có:

undefined

14 tháng 7 2017

Bài 1

a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)

Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)

Vậy minA=-9/8 khi x=-1/4

b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)

Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)

Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0

Vậy minB=1 khi x=y=0

14 tháng 7 2017

lý luận tương tự bài 1, bài này mình làm tắt

Bài 2:

a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)

\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)

Dấu "=" xảy ra khi x=5/6

b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)

\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)

Dấu "=" xảy ra khi x=y=0

27 tháng 6 2018

a) x2 - 2x + 5

= x2 - x - x + 1 + 4

= (x2 - x) - (x - 1) + 4

= x.(x-1) - (x-1) + 4

= (x-1)^2 + 4

Có: (x-1)^2 \(\ge\)0 => (x-1)^2 + 4\(\ge4\)

Dấu ''='' xảy ra khi x-1=0 => x = 1.

Vậy Min của x^2 - 2x + 5 bằng 4 khi x = 1

28 tháng 7 2017

1, \(A=3x^2+5x-1\)

\(=3\left(x^2+\dfrac{5}{3}x-\dfrac{1}{3}\right)\)

\(=3\left(x^2+\dfrac{5}{6}.x.2+\dfrac{25}{36}-\dfrac{37}{36}\right)\)

\(=3\left(x+\dfrac{5}{6}\right)^2-\dfrac{37}{12}\ge\dfrac{-37}{12}\)

Dấu " = " khi \(3\left(x+\dfrac{5}{6}\right)^2=0\Leftrightarrow x=\dfrac{-5}{6}\)

Vậy \(MIN_A=\dfrac{-37}{12}\) khi \(x=\dfrac{-5}{6}\)

2,3 tương tự

4, \(A=2x^2+7x\)

\(=2\left(x^2+\dfrac{7}{4}.x.2+\dfrac{49}{16}-\dfrac{49}{16}\right)\)

\(=2\left(x+\dfrac{7}{4}\right)^2-\dfrac{49}{8}\ge\dfrac{-49}{8}\)

Dấu " = " khi \(2\left(x+\dfrac{7}{4}\right)^2=0\Leftrightarrow x=\dfrac{-7}{4}\)

Vậy \(MIN_A=\dfrac{-49}{8}\) khi \(x=\dfrac{-7}{4}\)

5, 6 tương tự

7, \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

Dấu " = " khi \(\left(x^2+5x\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy \(MIN_A=-36\) khi x = 0 hoặc x = -5

8, \(A=x^2-4x+y^2-8x+6\)

\(=x^2-4x+4+y^2-8x+16-14\)

\(=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

Vậy \(MIN_A=-14\) khi x = 2 và y = 4