Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3
a+5b=a-b+6b
vì:
a-b và 6b cùng chia hết cho 6 nên: a+5b chia hết cho 6 (đpcm)
b) a-13b=a-b-12b vì a-b và 12b cùng chia hết cho 6
=> a-13b chia hết cho 6 (đpcm)
Coi a là số tự nhiên nhỏ nhất
Bài 1 Khi chia a cho 3 dư 1 ; chia 4 dư 2, 5 dư 3 suy ra a-1 chia hết cho 3, a-2 chia hết cho 4,a-3 chia hết cho 5,a-4 chia hết cho 6
hay a+2 chia hết cho3,a+2 chia hết cho 4,a+2 chia hết cho 5,a+2 chia hết cho 6 suy ra a+2 thuộc BC(3,4,5,6)
Suy ra BCNN(3,4,5,6)=32. 23.5=360
BCNN(3,4,5,6)=B(360)=(0;360;720;1080;...)
a thuộc(358;718;1078,..)
Mà a là số tự nhiên nhỏ nhất và chia hết cho11 suy ra a=1078
Bài 3 3n+1 là bội của 10 suy ra 3n+1 có tận cùng là 0 từ đó suy ra 3n+1=(...0)
3n =(...9) (số tận cùng của 3n=9)
Ta có 3n+4+1=3n.34+1
=(...9).(...1) +1
= (...0) Vậy 3n+4+1 có tận cùng là 0
Suy ra 3n+4+1 là bội của 10
= n.(n-1) + 4 chia hết n-1
suy ra 4 chia hết n-1
tự giải tiếp
duyệt nha
n2 + 3 chia hết cho n - 1
Mà n.(n - 1) chia hết cho n - 1
hay n2 - n chia hết cho n - 1
=> (n2 + 3 - n2 + n) chia hết cho n - 1
=> n + 3 chia hết cho n - 1
=> n - 1 + 4 hia hết cho n - 1
=> 4 chia hết cho n - 1
=> n - 1 thuộc Ư(4) = {-4; -2; -1; 1; 2; 4}
=> n thuộc {-3; -2; 0; 2; 3; 5}
Mà n là số tự nhiên
Vậy n thuộc {0; 2; 3; 5}.
n2 + 3 \(\div\) n - 1
=> ( n2 - 1 ) + 4 \(\div\) n - 1
=> ( n - 1 )( n + 1 ) + 4 \(\div\) n - 1
Vì: ( n - 1 )( n + 1 ) \(\div\) n - 1
=> 4 \(\div\) n - 1
=> n - 1 \(\in\) Ư(4) = { - 4; - 1; 1; 4 }
=> n \(\in\) { - 3; 0; 2; 5 }
Vì: n \(\in\) N nên n \(\in\) { 0; 2; 5 }
Vậy: n \(\in\) { 0; 2; 5 }
n2 + 3 chia hết cho n - 1
=> (n2 - 1) + 4 chia hết cho n - 1
=> (n - 1)(n + 1) + 4 chia hết cho n - 1
Vì (n - 1)(n + 1) chia hết cho n - 1
=> 4 chia hết cho n - 1
=> n - 1 \(\in\) Ư(4) = { + 1; + 2; + 4 }
=> n \(\in\) {-3; 0; 2; 5; -1; 3}
Vậy ...
Bài 1:
Vì \(ƯCLN\left(a,b\right)=16\Rightarrow\hept{\begin{cases}a=16.m\\b=16.n\end{cases};\left(m,n\right)=1;m,n\in N}\)
Thay a = 16.m, b = 16.n vào a+b = 128, ta có:
\(16.m+16.n=128\)
\(\Rightarrow16.\left(m+n\right)=128\)
\(\Rightarrow m+n=128\div16\)
\(\Rightarrow m+n=8\)
Vì m và n nguyên tố cùng nhau
\(\Rightarrow\) Ta có bảng giá trị:
m | 1 | 8 | 3 | 5 |
n | 8 | 1 | 5 | 3 |
a | 16 | 128 | 48 | 80 |
b | 128 | 16 | 80 | 48 |
Vậy các cặp (a,b) cần tìm là:
(16; 128); (128; 16); (48; 80); (80; 48).
Bài 2:
Gọi d là ƯCLN (2n+1, 2n+3), d \(\in\) N*
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Vì 2n+3 và 2n+1 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+1,2n+3\right)=1\)
\(\Rightarrow\) 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.
1 , tính tổng các số hạng của A theo lũy thừa ta có : (100 - 0 ) : 1 + 1 = 101 (số hạng)
vây A= 1 + (2 +22 + 23+24)+24(2+22+23+24)+28(2+22+23+24)+..............+296(2+22+223+24)
A= 1+ 30 + 30 .24 + 30 . 28 +....................30 .296
các số hạng của A chỉ có 1 là không chia hết cho 30 . vậy A : 30 SẼ DƯ 1
2 , vì (n+3) chia hết cho (2n+1) nên : (2n + 6) cũng chia hết cho (2n+1)
ta có : 2n + 6 = (2n+1) +5 . vậy nếu 5 chia hết cho (2n+1) thì (2n+6) sẽ chia hết cho (2n+1)
ước số của 5 là : 5 va 1 vậy 2n+1 = 1 thì n = 0
2n +1 = 5 thì n =2