K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2015

1, a +b +c = 0 => a + b = -c ; a +c = -b ; b+c = -a

thay vào M ta có

 M = a . -c . -b = abc (1)

Thay tương tự vào  N , P ta cũng đc N =abc (2)

                                                       P =abc( 3)

Từ 1 2 và 3 => ĐPCM

22 tháng 6 2015

2,

a + b +c = 2P

=>  b + c = 2P -a

=> ( b + c)^2 = ( 2P -a)^2

=> b^2 + 2bc+ c^2 = 4p^2 - 4pa + a^2

=> 2bc+ b^2 + c^2 -a^ 2 = 4p^2 - 4pa

=> 2bc + b^2 + c^2 -a ^ 2 = 4p(p-a)=> ĐPCM

19 tháng 6 2016

Bài 1:ta có a+b+c=0

=> a+b=-c      ;     a+c=-b           ;           b+c=-a

M= a(a+b)(a+c)= a(-c)(-b)=abc

N = b(b+c)(b+a)=b(-a)(-c)=abc

P=c(c+a)(c+b)= c(-b)(-a)=abc

=> M=N=P

19 tháng 6 2016

vế trái= \(\left(b+c\right)^2\)-a2=(a+b+c)(b+c-a) = 2p(2p-a-a)=4p(p-a)= VP

=> đpcm

8 tháng 6 2016

TC:a+b+cd=2p=>b+c=2p-a

=>(b+c)2=(2p-a)2

=>b2+2bc+c2=4p2-4pa+a2

=>b2+2bc+c2-a2=4p2-4pa

=>2bc+b2+c2-a2=4p(p-a) ĐPCM

29 tháng 3 2018

1)\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{b+a}=0\)

\(\Leftrightarrow a\cdot\left(\dfrac{a}{b+c}+1\right)+b\cdot\left(\dfrac{b}{a+c}+1\right)+c\left(\dfrac{c}{a+b}+1\right)-a-b-c=0\)

\(\Leftrightarrow a\cdot\dfrac{a+b+c}{b+c}+b\cdot\dfrac{a+b+c}{a+c}+c\cdot\dfrac{a+b+c}{a+b}-a-b-c=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\left(loai\right)\\\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\left(đpcm\right)\)

p/s:đề thiếu và dư đk

29 tháng 3 2018

Ai biết giải thì giúp mình mấy bài toán này với, mình xin cảm ơn rất nhiều

Bài 1: 

b: 

x=9 nên x+1=10

\(M=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...-x\left(x+1\right)+x+1\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...-x^2-x+x+1\)

=1

c: \(N=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)+2^{10}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\left(1+2^5+2^{10}\right)⋮31\)

17 tháng 7 2018

\(2bc+b^2+c^2-a^2\)

\(=\left(b+c\right)^2-a^2\)

\(=\left(b+c-a\right)\left(b+c+a\right)\)

\(=\left(b+c+a-2a\right).2p\)

\(=\left(2p-2a\right).2p\)

\(=4p\left(p-a\right)\)\(\left(ĐPCM\right)\)

17 tháng 7 2018

\(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)

Biến đổi vế phải ta có :

\(4p\left(p-a\right)\)

\(=2p\left(2p-2a\right)\)

\(=\left(a+b+c\right)\left(b-c-a\right)\)

\(=2bc+b^2+c^2-a^2=VT\)(đpcm)

11 tháng 8 2017

Giúp mình với!

11 tháng 8 2017

b1: ta có: a^2+b^2 >0 ; b^2 +c^2>0 ; c^2 +a^2>0

=> \(a^2+b^2\ge2\sqrt{a^2.b^2}\) (BĐT cau chy)

\(b^2+c^2\ge2\sqrt{b^2.c^2}\) (BĐT cau chy)

\(c^2+a^2\ge2\sqrt{c^2.a^2}\)(BĐT cauchy)

=>\(\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8a^2.b^2.c^2\)

Dấu '= xảy ra khi a=b=c (đpcm)

27 tháng 6 2016

\(a+b+c=2p\Rightarrow\frac{a+b+c}{2}=p\Rightarrow p-a=\frac{b+c-a}{2}\Rightarrow\left(b+c-a\right)=2\left(p-a\right)\)

Và: \(2bc+b^2+c^2-a^2=\left(b+c\right)^2-a^2=\left(b+c-a\right)\left(b+c+a\right)=2\left(p-a\right)\cdot2p=4p\left(p-a\right)\)đpcm.

4 tháng 5 2018

\(0\le a,b,c\le1\)

\(\Rightarrow\left\{{}\begin{matrix}a^2\le a\\b^2\le b\\c^2\le c\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2\le a+b+c=2\)

AH
Akai Haruma
Giáo viên
29 tháng 4 2018

Lời giải:

\(0\leq a,b,c\leq 1\Rightarrow (a-1)(b-1)(c-1)\leq 0\)

\(\Leftrightarrow (ab-a-b+1)(c-1)\leq 0\)

\(\Leftrightarrow abc-(ab+bc+ac)+(a+b+c)-1\leq 0\)

\(\Leftrightarrow ab+bc+ac\geq abc+a+b+c-1=abc+1\geq 1\) do \(abc\geq 0\)

Ta có:

\(a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ac)=4-2(ab+bc+ac)\)

\(ab+bc+ac\geq 1\) (cmt) nên \(a^2+b^2+c^2=4-2(ab+bc+ac)\leq 2\)

Ta có đpcm

Dấu bằng xảy ra khi \((a,b,c)=(1,1,0)\) hoặc hoán vị của chúng.