K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2016

1

2x . 3=3y .4

=> x=2y=>\(\frac{x}{2}=y\Rightarrow\frac{x}{4}=\frac{y}{2}\)

\(\frac{x}{4}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{5}=\frac{x-2y+3z}{4-4+15}=\frac{1}{15}=\)

x=1/15x4=4/15

y=1/15x2=2/15

z=1/15x6=1/10

\(\Rightarrow x-y-z=\frac{4}{15}-\frac{2}{15}-\frac{1}{10}=\frac{1}{30}\)

 

28 tháng 5 2016

\(\left(2x-3\right)^2-2\left(3x+1\right)^2=2x\left(x-2\right)+\left(x-1\right)\left(x+2\right)\)

4\(x^2\)-12x+9-2(9\(x^2\)+6x+1)=2\(x^2\)-4x+\(x^2\)+2x-x-2

4\(x^2\)-12x+9-18\(x^2\)-12x-2=2\(x^2\)-4x+\(x^2\)+2x-x-2

(4\(x^2\)-18\(x^2\)-2\(x^2\)-\(x^2\)) +(-12x-12x+4x-2x+x)+(9-2+2)=0

-17\(x^2\)-21x+9=0

 

21 tháng 5 2016
  1. Ta chứng minh bất đẳng thức phụ dưới đây: \(\frac{1}{\sqrt{x}\left(x+1\right)}=\frac{\sqrt{x}}{x\left(x+1\right)}=\sqrt{x}\left(\frac{1}{x}-\frac{1}{x+1}\right)=\sqrt{x}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x+1}}\right)\)\(=\left(1+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)< 2\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\)

Áp dụng  : \(\frac{1}{\sqrt{1}.2}< 2.\left(1-\frac{1}{\sqrt{2}}\right)\)

\(\frac{1}{\sqrt{2}.3}< 2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)

...................................

\(\frac{1}{\sqrt{2015}.2016}< 2.\left(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)\)

Cộng các BĐT trên với nhau được : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}}< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)=2\left(1-\frac{1}{\sqrt{2016}}\right)< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)

Từ đó suy ra đpcm

Cái ............... là gì vậy bn

14 tháng 5 2016

2.ta có |x-1|+(y+2)mũ 20=0=>x-1=0 đồng thời y+2=0

<=>x=1 và y=-2

Thay x=1 y=-2 vào B ta có:13.(1)^5-5.(-2)^3+2016=1989

5 tháng 12 2016

do z tỉ lệ nghịch với y theo hệ số tỉ lệ \(\frac{-1}{2}\)=>zy=\(\frac{-1}{2}\)=>z=\(\frac{-1}{2}\).\(\frac{1}{y}\)(1)

và z tỉ lệ thuận với x theo hệ số tỉ lệ 4 =>z=4x => x=\(\frac{1}{4}\).z (2)

thay (2) vào (1), ta được: x=\(\frac{1}{4}.\frac{1}{2}.\frac{1}{y}\)=\(\frac{1}{8}.\frac{1}{y}\)=>xy=\(\frac{1}{8}\)

vậy x tỉ lệ nghịch với x theo hệ số tỉ lệ \(\frac{1}{8}\)

5 tháng 12 2016

nhầm mất hệ số tỉ lệ là\(\frac{-1}{8}\)

a) Ta có: \(-2xy^2\cdot\left(x^3y-2x^2y^2+5xy^3\right)\)

\(=-2x^4y^3+4x^3y^4-10x^2y^5\)

b) Ta có: \(\left(-2x\right)\cdot\left(x^3-3x^2-x+1\right)\)

\(=-2x^4+6x^3+2x^2-2x\)

c) Ta có: \(3x^2\left(2x^3-x+5\right)\)

\(=6x^5-3x^3+15x^2\)

d) Ta có: \(\left(-10x^3+\frac{2}{5}y-\frac{1}{3}z\right)\cdot\left(-\frac{1}{2}xy\right)\)

\(=5x^4y-\frac{1}{5}xy^2+\frac{1}{6}xyz\)

e) Ta có: \(\left(3x^2y-6xy+9x\right)\cdot\left(-\frac{4}{3}xy\right)\)

\(=-4x^3y^2+8x^2y^2-12x^2y\)

f) Ta có: \(\left(4xy+3y-5x\right)\cdot x^2y\)

\(=4x^3y^2+3x^2y^2-5x^3y\)

22 tháng 12 2020

ối lắm thế :((

3.

a/ Giả sử đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số tỉ lệ là k

=> y = k/x

Thay x = 8 ; y = 15 vào ct y = k/x ta có

\(\dfrac{k}{8}=15\Rightarrow k=120\)

Thay \(k=120\) vào ct \(y=\dfrac{k}{x}\) ta có

\(y=\dfrac{120}{x}\)

b/ Thay x = 6 vào ct \(y=\dfrac{120}{x}\) ta có

\(y=\dfrac{120}{6}=20\)

Thay x = - 10 vào ct \(y=\dfrac{120}{x}\) ta có

\(y=\dfrac{120}{-10}=-12\)

b/ Thay y = 2 vào ct \(y=\dfrac{120}{x}\) ta có

\(2=\dfrac{120}{x}\Rightarrow x=60\)

Thay y = - 30 vào ct \(y=\dfrac{120}{x}\) ta có

\(-30=\dfrac{120}{x}\Rightarrow x=-4\)

4/

a/ Giả sử đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ là k

=> y = xk

Thay y = 4 ; x = 6 vào ct y = xk ta có

\(4=6k\Rightarrow k=\dfrac{2}{3}\)

Thay \(k=\dfrac{2}{3}\) vào ct y = xk ta có

\(y=\dfrac{2}{3}x\)

b/ Thay x = 9 vào ct \(y=\dfrac{2}{3}x\)  ta có

\(y=\dfrac{2}{3}.9=6\)

Thay y = - 8 vào ct \(y=\dfrac{2}{3}x\) ta có

\(-8=\dfrac{2}{3}x\Rightarrow x=-12\)

 

22 tháng 12 2020

=(( biết căn bậc hai x=9 nhưng khum biết trình bày,huhu

 

 

a: \(y=k_1\cdot x\)

\(x=k_2\cdot z\)

\(\Leftrightarrow k_2\cdot z=\dfrac{y}{k_1}\)

\(\Leftrightarrow y=z\cdot k_1\cdot k_2\)

Vậy: Hệ số tỉ lệ là \(k=k_1\cdot k_2\)

b: Vì x tỉ lệ thuận với y theo hệ số tỉ lệ 0,4

và y tỉ lệ thuận với z theo hệ số tỉ lệ 6

nên x tỉ lệ thuận với z theo hệ số tỉ lệ 2,4

=>x=2,4z

Khi z=5 thì x=12

Khi z=-1/3 thì x=-0,8

Khi z=3/5 thì x=1,44