Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì 3n \(⋮\)9 ( n \(\ge\)2 ) \(\Rightarrow\)32 + 33 + 34 + ... + 320 \(⋮\)9
\(\Rightarrow\)A không thể là số chính phương
b) B = 1010 + 8 = 10...0 + 8 = 10...8
B có chữ số tận cùng là 8 nên B không thể là số chính phương
c) C = 100! + 7
C = ...00 + 7 = ...07
C có chữ số tận cùng là 7 nên C không là số chính phương
d) D = 1010 + 5 = 10...00 + 5 = 10...05
D có chữ số tận cùng là 05 \(⋮\) 5 nhưng D không chia hết cho 25 vì có 2 chữ số tận cùng là 05 nên D không thể là số chính phương
e) Ta có : F = 10100 + 1050 + 1
\(\Rightarrow\)F = 10...00 ( 100 chữ số 0 ) + 10...0 ( 50 chữ số 0 ) + 1
F = 10...010...01
Từ đó : S(F) = 1 + 1 + 1 = 3
Vì S(F) \(⋮\)3 mà không chia hết cho 9 nên F không thể là số chính phương
a) DỄ
b) 1010+8=10000000008
c)100 ! + 7=9.332622e+157
d)1010+5=10000000005
e)10100+1050+1=1e+100
a) Số số hàng trong tổng A là:
\(\frac{\left(2n+1-1\right)}{2}+1=n+1\)
\(A=\frac{\left(2n+1+1\right)\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)
Do n là số tự nhiên nên A là số chính phương.
b) Số số hạng trong tổng B là:
\(\frac{2n-2}{2}+1=n\)
\(B=\frac{\left(2n+2\right).n}{2}=\left(n+1\right)n\)
Vậy số B không thể là số chính phương.
A=3+3^2 +3^3 +...+3^20
có 3^2+3^3+...+3^20 chia hết cho 9 nên A chia 9 dư 3 vậy A chia hết cho 3 mà ko chia hểt cho 9 nên A ko phải số chính phương
Bạn tính hẳn câu b ra =1143 có tận cùng là 3 nên B ko chính phương
C có tận cùng là 8 nên ko phải chính phương
d tận cùng là 7 nên ko phải số chính phương
E tận cùng là 05 chia hết cho 5 nhưng ko chia hết cho 25 nên E ko phải số chính phương
G có tổng các c/s là 3 nên chia hết cho 3, ko chia hết cho 9 nên ko phải chính phương
TA có
3.4.5.6.7 + 7
= 3.6.7 .(4.5 ) + 7
= 3.6.7. 20 + 7
Tận cùng là 0 + 7 = 7
=> ko là số chính phuuwowng
Ta có: 3.4.5.6.7+7
=3.6.7.(4.5)+7
=3.6.7.20+7
=3.6.7.2.10+7
Vì 3.6.7.2.10 có tận cùng là 0
=>3.6.7.2.10+7 có tận cùng là 7
Vì số chính phương không có số tận cùng là 7
=>3.4.5.6.7+7 không phải số chính phương.
hello lừa đảo