Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4]
tg DEC ~ tg DCB
=> EC/BC = DC/DB
=> EC = BC.DC/DB
=> AC.EC = AC.BC.DC/DB = 2S(ACB).DC/DB
Cần c/m AF.CH = AC.EC
<=> AF.CH = 2S(ACB).DC/DB
<=> AE.DB = 2S(ACB).DC/CH (*)
Mà 2S(ACB)/CH = AB
=> (*) <=> AE.DB = AB.DC = AB.DA
Mà AE.DB = 2S(ADB); AB.DA = 2S(ADB)
Vậy: AF.CH = AC.EC
5]
Ta đi c/m KA=KD để suy ra KE là tiếp tuyến.
AE kéo dài CH tại M
=> AK/CM = KI/IC
=> KD/CH = KI/IC
=> AK/CM = KD/CH (*)
DP cắt CH tại P; BC cắt AD tại J
=> HP/AD = BP/BD = CP/DJ (**)
Tam giác ACJ vuông tại C, AD=AD => DC là trung tuyến => AD=DJ
Từ (**) => HP=PC
Xét 2 tg vuông AMH và HBP, ta có ^AMH = ^HBP (cạnh tương ứng vuông góc)
=> tg AMH ~ HBP
=> MH/AH = HB/PH
=> MH = AH.HB/PH = AH.HB/(CH/2) = 2AH.HB/CH (***)
Do CH^2 = AH.HB => AH.HB/CH = CH
Từ (***) => MH = 2CH => CM =CH
Từ (*) => AK =KD
=> KE là trung tuyến tg vuông ADE => ka=ke
=> tg OKA = tg OKE (do OA=OE, OK chung; AK=KD)
=> ^KEO = ^KAO = 90
=> KE là tiếp tuyến của (O)
3, ta có: góc MFA = \(\frac{1}{2}\).(sđ cung AM + sđ cung BQ) (góc có đỉnh nằm trong đường tròn )
và góc MPQ = \(\frac{1}{2}\).sđ cung MQ = \(\frac{1}{2}\).. (sđ cung MB + sđ cung BQ ) (góc nội tiếp)
mà sđ cung AM = sđ cung MB (do M là điểm chính giữa cung AB )
=> góc MFA = góc MPQ
=> góc ngoài MFA tại hai đỉnh có hai góc đối nhau bằng nhau thì tứ giác EFQP là tứ giác nội tiếp hay E,F,P,Q cùng thuộc 1 đường tròn (đpcm)