K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

a)ĐKXĐ:x>=0;x khác 9

A=[\(\frac{\sqrt{x}}{\sqrt{x}-3}\) - \(\frac{3\sqrt{x}+9}{x-9}\)\(\frac{2\sqrt{x}}{\sqrt{x}+3}\)\(\div\) [\(\frac{2\sqrt{x}-2}{\sqrt{x}-3}\)-1]

 A=[\(\frac{\sqrt{x}\left(\sqrt{x}-3\right)-3\sqrt{x}-9+2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}\)\(\div\) [\(\frac{\left(2\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-x+9}{x-9}\)]

A=[\(\frac{3x-12\sqrt{x}-9}{x-9}\)].[\(\frac{x-9}{x-4\sqrt{x}+3}\)]

A=\(\frac{3x-12\sqrt{x}-9}{x-4\sqrt{x}+3}\)

 

 

1 tháng 9 2016

a) ĐKXĐ: \(x\ge0;x\ne9\)

\(B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\)

\(B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{3-11\sqrt{x}}{x-9}\)

\(B=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-3+11\sqrt{x}}{x-9}\)

\(B=\frac{2x-6+x+4\sqrt{x}+3-3+11\sqrt{x}}{x-9}\)

\(B=\frac{3x-6+15\sqrt{x}}{x-9}\)

a: ĐKXĐ: x>=0; x<>1

\(A=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

b: \(A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)

\(=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}< =0\)

Do đó: A<=2/3

ĐKXĐ: x>=1 và x<>2

\(A=\dfrac{\sqrt{x-1}+\left|\sqrt{x-1}-1\right|+1}{\left|x-2\right|}\)

Trường hợp 1: \(\sqrt{x-1}>1\Leftrightarrow x>2\)

=>\(A=\dfrac{2\sqrt{x-1}}{\left|x-2\right|}\)

Trường hợp 2: 1<x<2

\(A=\dfrac{2}{\left|x-2\right|}\)

18 tháng 6 2016

ĐK:\(x>0\)

\(C=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}=\frac{\sqrt{x}.\left[\left(\sqrt{x}\right)^3+1\right]}{x-\sqrt{x}+1}+1-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}\)

=\(\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-2\sqrt{x}-1\)

\(=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)

\(A=\left(\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}+\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}\right):\dfrac{x-1}{x^3}\)

\(=\dfrac{x^2+3}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}=\dfrac{x\left(x^2+3\right)}{\left(x-1\right)\left(x+1\right)^2}\)

a: \(A=\left(x^2+x+1-x\right):\dfrac{1-x^2}{\left(1-x\right)-x^2\left(1-x\right)}\)

\(=\left(x^2+1\right)\cdot\left(1-x\right)\)

b: Để A<0 thì 1-x<0

=>x>1

c: |x-4|=5

=>x-4=5 hoặc x-4=-5

=>x=9(nhận) hoặc x=-1(loại)

Thay x=9 vào A, ta được:

\(A=\left(9^2+1\right)\left(1-9\right)=82\cdot\left(-8\right)=-656\)

3 tháng 9 2016

\(A=\left(\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}-3}{x-1}\right):\left(\frac{x+2}{x+\sqrt{x}-2}-\frac{\sqrt{x}}{\sqrt{x}+2}\right)\left(ĐK:x\ge0;\ne1\right)\)

\(=\left[\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\left[\frac{x+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}}{\sqrt{x}+2}\right]\)

\(=\frac{3\left(\sqrt{x}+1\right)-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}+3-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{x+2-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{2\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\)

\(=\frac{2\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}=\frac{2\left(\sqrt{x}+3\right)}{\sqrt{x}+1}\)